Skip to main content

Advertisement

Log in

The Ameliorative Role of 5-Aminolevulinic Acid (ALA) Under Cr Stress in Two Maize Cultivars Showing Differential Sensitivity to Cr Stress Tolerance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heavy metal (HM) contamination of the environment is a serious threat to sustainable crop production. Among the HMs, chromium (Cr) is one of the most toxic HMs that is known to negatively affect growth and metabolic activities of diverse crop plants. The present study was designed to investigate the ameliorative role of 5-aminolevulinic acid (ALA) under Cr stress in two maize (Zea mays L.) cultivars showing differential sensitivity to Cr tolerance. ALA is a biosynthesis precursor and it has a dominant regulatory effect related to physiological, respiratory, and photosynthesis processes in various plant species. Three concentrations of Cr (0, 5, and 10 mg kg−1) were tested under the graded levels of ALA application (0, 12.5, and 25 mg L−1). The results indicated that Cr stress differentially reduced plant growth attributes, gas exchange characteristics, photosynthetic pigments, and biomass in both the cultivars. Oxidative stress increased as evidenced in the form of electrolyte leakage, malondialdehyde, and hydrogen peroxide (H2O2) accumulation in plants. The anti-oxidative enzyme activities, that is, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) both in the leaves and roots of maize cultivars decreased due to Cr stress. The concentration of Cr increased in roots and shoots of maize under Cr levels without ALA. Under Cr stress, ALA exogenous application markedly enhanced plant growth, photosynthetic pigments, gas exchange capacity, and biomass. Furthermore, ALA application decreased the Cr-induced oxidative stress in maize cultivars by improving the activities of CAT, POD, and SOD in plants. After ALA application, the Cr concentrations and total Cr uptake by plants differently decreased in both cultivars. The 6103 cultivar of maize was found to be a tolerant cultivar against Cr stress due to its strong defensive system with a higher rate of antioxidant enzyme activities. On the other hand, the other maize cultivar (9108) was found to be a sensitive cultivar against Cr stress due to its weak defense system with higher contents of reactive oxygen species. These findings suggest that ALA can play a regulatory role in maintaining optimum plant growth and efficient photosynthetic processes under Cr-challenged habitats in maize. Thus, ALA application may be used as a sustainable remedial strategy to alleviate Cr-induced stress in maize cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  Google Scholar 

  • Ahmad P, Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016) Calcium and potassium supplementation enhanced growth, osmolytes, secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:112

    Google Scholar 

  • Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2017a) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322

    Article  Google Scholar 

  • Ahmad R, Ali S, Hannan F, Rizwan M, Iqbal M, Hassan Z, Akram NA, Maqbool S, Abbas F (2017b) Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ Sci Pollut Res 24:8814–8824

    Article  CAS  Google Scholar 

  • Air T, Akram NA, Kausar S, Farid N, Ashraf M, AL-Qurainy FA (2018) 5-Aminolevulinic acid induces regulation in growth, yield and physio-biochemical characteristics of wheat under water stress. Sains Malays 47:661–670

    Article  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    Article  CAS  Google Scholar 

  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013a) 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environ Sci Pollut Res 20:7256–7267

    Article  CAS  Google Scholar 

  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013b) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614

    Article  CAS  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod 52:617–626

    Article  CAS  Google Scholar 

  • Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22:10669–10678

    Article  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Imran KH, Tanveer M, Shahid M, Shakoor A, Longchang WA (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27:262–273

    Article  Google Scholar 

  • Ashfaque F, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160

    Article  CAS  Google Scholar 

  • Balasaraswathi K, Jayaveni S, Sridevi J, Sujatha D, Aaron KP, Rose C (2017) Cr-induced cellular injury and necrosis in Glycine max L.: biochemical mechanism of oxidative damage in chloroplast. Plant Physiol Biochem 118:653–666

    Article  CAS  Google Scholar 

  • Balestrasse KB, Tomaro ML, Batlle A, Noriega GO (2010) The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71:2038–2045

    Article  CAS  Google Scholar 

  • Bindu RC, Vivekanandan M (1998) Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul 26:15–18

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:1–11

    Google Scholar 

  • Czarnecki O, Gläßer C, Chen JG, Mayer KF, Grimm B (2012) Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling. Front Plant Sci 3:1–19

    Article  Google Scholar 

  • Daud MK, Mei L, Variath MT, Ali S, Li C, Rafiq MT, Zhu SJ (2014) Chromium(VI) uptake and tolerance potential in cotton cultivars: effect on their root physiology, ultramorphology, and oxidative metabolism. BioMed Res Int 2014:1–12

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Dwivedi SK, Arora A, Singh VP, Singh GP (2018) Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis. Photosynthetica 56:478–486

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SA, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MI, Ata-Ul-Karim ST, Bukhari SA, Ahmad T (2018) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    Article  CAS  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015a) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    Article  CAS  Google Scholar 

  • Gill RA, Ali B, Islam F, Farooq MA, Gill MB, Mwamba TM, Zhou W (2015b) Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol Biochem 94:130–143

    Article  CAS  Google Scholar 

  • Habiba U, Ali S, Hafeez F, Rizwan M, Rehman MZ, Hussain A, Asad SA (2018) Morpho-physiological responses of maize cultivars exposed to chromium stress. Int J Agric Biol. https://doi.org/10.17957/IJAB/15.0874

    Article  Google Scholar 

  • Han R, Gao G, Li Z, Dong Z, Guo Z (2018) Effects of exogenous 5-aminolevulinic acid on seed germination of alfalfa (Medicago varia Martyn.) under drought stress. Grassland Sci 64:100–107

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Herman S, Marco G, Cecilia B, Alfonso V, Luis M, Cristián V, Sebastián P, Sebastián A (2016) Effect of water availability on growth, water use efficiency and omega 3 (ALA) content in two phenotypes of chia (Salvia hispanica L.) established in the arid Mediterranean zone of Chile. Agric Water Manag 173:67–75

    Article  Google Scholar 

  • Hernández-Madrigal F, Ortiz-Castro R, Ruiz-Herrera LF, Cervantes C, López-Bucio J, Martínez-Trujillo M (2018) Sucrose protects arabidopsis roots from chromium toxicity influencing the auxin–plethora signaling pathway and improving meristematic cell activity. J Plant Growth Regul 37:530–538

    Article  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018a) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526

    Article  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Hameed A, Hafeez F, Alamri SA, Alyemeni MN, Wijaya L (2018b) Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J Plant Growth Regul 2018:1–10

    Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot 11:67–77

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of Silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241:847–860

    Article  CAS  Google Scholar 

  • Kishore PV, Madhuvarasu SS, Moru S (2018) Stimulus responsive hydrogel-coated etched fiber Bragg grating for carcinogenic chromium(VI) sensing. Opt Eng 57:017101

    Article  Google Scholar 

  • Kosar F, Akram NA, Ashraf M (2015) Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S Afr J Bot 96:71–77

    Article  CAS  Google Scholar 

  • Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J (2018) H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biol 18:34

    Article  Google Scholar 

  • Liu M, Li J, Niu J, Wang R, Song J, Lv J, Zong X, Wang S (2016) Interaction of drought and 5-aminolevulinic acid on growth and drought resistance of Leymus chinensis seedlings. Acta Ecol Sin 36:180–188

    Article  CAS  Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol Plant 76:386–390

    Article  CAS  Google Scholar 

  • Naeem MS, Rasheed M, Liu D, Jin ZL, Ming DF, Yoneyama K, Takeuchi Y, Zhou WJ (2011) 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol Plant 33:517–528

    Article  CAS  Google Scholar 

  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou W (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem 57:84–92

    Article  CAS  Google Scholar 

  • Nafees M, Ali S, Naveed M, Rizwan M (2018) Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. Environ Sci Pollut Res 25:6387–6397

    Article  CAS  Google Scholar 

  • Oh YJ, Song H, Shin WS, Choi SJ, Kim YH (2007) Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere 66:858–865

    Article  CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Qayyum MF, Rehman MZ, Ali S, Rizwan M, Naeem A, Maqsood MA, Khalid H, Rinklebe J, Ok YS (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    Article  CAS  Google Scholar 

  • Ranieri E, Gikas P (2014) Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollut 225:1981

    Article  Google Scholar 

  • Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum MF (2015) Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res 22:16897–16906

    Article  CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS (2016) Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf 133:218–225

    Article  Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Rehman MZ, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277

    Article  CAS  Google Scholar 

  • Saleem M, Asghar HN, Khan MY, Zahir ZA (2015) Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Environ Sci Pollut Res 22:10610–10617

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Najeeb U, Bharwana SA, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  Google Scholar 

  • Srivastava RK, Rajpoot R, Pandey P, Rani A, Dubey RS (2018) Cadmium alters mitochondrial membrane potential, inhibits electron transport chain activity and induces callose deposition in rice seedlings. J Plant Growth Regul 37:335–344

    Article  CAS  Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium(VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed Res Int 2018:1–10

    Article  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58

    Article  CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    Article  CAS  Google Scholar 

  • Vassilev A, Iordanov I, Chakalova E, Kerin V (1995) Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgare L.) plants and structural and functional changes in the photosynthetic apparatus. Bulg J Plant Physiol 21:2–21

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  Google Scholar 

  • Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant 121:258–264

    Article  CAS  Google Scholar 

  • Wang LJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J Integ Plant Biol 47:1084–1091

    Article  CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    Article  CAS  Google Scholar 

  • Wu LE, Levina A, Harris HH, Cai Z, Lai B, Vogt S, James DE, Lay PA (2016) Carcinogenic chromium(VI) compounds formed by intracellular oxidation of chromium(III) dietary supplements by adipocytes. Angew Chem Int Ed 55:1742–5174

    Article  CAS  Google Scholar 

  • Wu S, Hu Y, Zhang X, Sun Y, Wu Z, Li T, Lv J, Li J, Zhang J, Zheng L, Huang L (2018) Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environ Exp Bot 147:43–52

    Article  CAS  Google Scholar 

  • Xiaomeng LI, Li ZH, Qiling SO, Chang J, Jiabao YE, Zhang W, Yongling LI, Feng XU (2018) Effects of 5-aminolevulinic acid on the photosynthesis, antioxidant system, and α-bisabolol content of Matricaria recutita. Notulae Bot Hortic Agrobotanici Cluj-Napoca 46:418–425

    Article  Google Scholar 

  • Xiong JL, Wang HC, Tan XY, Zhang CL, Naeem MS (2018) 5-Aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiol Biochem 124:88–99

    Article  CAS  Google Scholar 

  • Yiu JC, Juang LD, Fang DY, Liu CW, Wu SJ (2009) Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic 120:306–314

    Article  CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211

    Google Scholar 

  • Zhang J, Li D-M, Gao Y, Yu B, Xia C-X, Bai J-G (2012) Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biol Plantarum 56:780–784

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Higher Education Commission (HEC) Islamabad, Pakistan (IPFP/HRD/HEC/2014/1035) and Government College University Faisalabad, Pakistan. The authors would also like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding to the Research Group number (RG-1435-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali.

Ethics declarations

Conflict of interest

All the authors do not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habiba, U., Ali, S., Rizwan, M. et al. The Ameliorative Role of 5-Aminolevulinic Acid (ALA) Under Cr Stress in Two Maize Cultivars Showing Differential Sensitivity to Cr Stress Tolerance. J Plant Growth Regul 38, 788–798 (2019). https://doi.org/10.1007/s00344-018-9890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9890-z

Keywords

Navigation