Skip to main content
Log in

External Nitrogen and Carbon Source-Mediated Response on Modulation of Root System Architecture and Nitrate Uptake in Wheat Seedlings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitrogen uptake efficiency is an important component trait that could be targeted for improving nitrogen use efficiency of crop plants. To understand the responses of different nitrate transport systems and the influence of root system architecture on nitrate uptake under limited nitrate conditions in wheat (Triticum aestivum L.) at the seedling stage, we studied nitrate uptake, root system architecture, and expression of different nitrate transporter genes in induced and non-induced wheat seedlings. Further, effects of inclusion of sucrose and two amino acids (glutamine and asparagine) in induction medium on these parameters were also studied. We observed that the induced wheat root system took up more nitrate as compared to non-induced root system in a dose-dependent manner. Gene expression of both high- and low-affinity nitrate transporter gene showed differential expression in the induced root tissues, as compared to non-induced tissues, depending on the concentration of nitrate present in induction medium. External nutrient media containing sucrose, glutamine, and asparagine reduce nitrate concentration in both root and shoot tissues and also influence the gene expression of these transporters. Our observations indicate that upon induction with milder external nitrate concentrations, the root architecture is modulated by changing overall lateral root size and 1st order lateral root numbers along with activation of nitrate transporters which acquire and transport nitrate in roots and shoots, respectively, depending on the carbon and nitrogen source available to seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agren GI, Ingestad T (1987) Root: shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10:579–586

    Google Scholar 

  • Alvarez JM, Vidal EA, Gutierrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191

    Article  CAS  PubMed  Google Scholar 

  • Arsenault JL, Pouleur S, Messier C, Guay R (1995) WinRHIZO™, a root-measuring system with a unique overlap correction method. HortScience 30:906

    Article  Google Scholar 

  • Aslam M, Travis RL, Huffaker RC (1992) Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol 99:1124–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchner P, Hawkesford MJ (2014) Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. J Expt Bot 65:5697–5710

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicyclic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrient between shoots and roots in cereals: a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Expt Bot 40:753–762

    Article  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:395–398

    Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1996) Diurnal regulation of NO3 uptake in soybean plants IV. Dependence on current photosynthesis and sugar availability to the roots. J Expt Bot 47:893–900

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and growth of seminal root system in barley. J Expt Bot 24:1189–1202

    Article  CAS  Google Scholar 

  • Fan X, Naz M, Fan X, Wei X, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Expt Bot 68:2463–2475

    Article  CAS  Google Scholar 

  • Fichtner K, Schulze ED (1992) The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92: 236–341

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochem Biophys Acta 1465:219–235

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Ann Rev Plant Biol 53:203–224

    Article  CAS  Google Scholar 

  • Giehl RFH, Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giehl RFH, Gruber BD, vonWirén N (2014) It’s time to make changes: modulation of root system architecture by nutrient signals. J Expt Bot 65:769–778

    Article  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  Google Scholar 

  • Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. J Expt Bot 62:2299–2308

    Article  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Goyal SS, Huffaker RC (1986) A novel approach and a fully automated microcomputer-based system to study kinetics of NO3; NO2 and NW transport simultaneously by intact wheat seedlings. Plant Cell Environ 9:209–215

    CAS  Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, Wiren N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 168:161–179

    Article  CAS  Google Scholar 

  • Guo T, Xuan H, Yang Y, Wang L, Wei L, Wang Y, Kang G (2014) Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation. J Plant Growth Regul 33:837–848

    Article  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H et al (2006) Arabidopsis LHT1 is a high affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  Google Scholar 

  • Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepper B (1992) Development and growth of crop root system. In: Hatfield JA, Stewart BA (eds) Advances in soil science, limitations to plant root growth, vol 19. Springer-Verlag, New York, pp 1–25

    Chapter  Google Scholar 

  • Krapp A, Fraisier V, Scheible WR, Quesada A, Gojon A, Stitt M (1998) Expression studies of Nrt2:1Np, a putative high-affinity nitrate transporter: evidence for its role in nitrate uptake. Plant J 14:723–731

    Article  CAS  Google Scholar 

  • Kronzucker H, Glass ADM, Siddiqi MY (1995) Nitrate induction in spruce: an approach using compartmental analysis. Planta 196:683–690

    Article  CAS  Google Scholar 

  • Krouk G, Tillard P, Gojon A (2006) Regulation of the high-affinity NO3 2– uptake system by NRT1.1-mediated NO3 2– demand signaling in Arabidopsis. Plant Physiol 142:1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:265–272

    Article  CAS  Google Scholar 

  • Laine P, Ourry A, Boucaud J (1995) Shoot control of nitrate uptake rates by roots of Brassica napus L.: effects of localized nitrate supply. Planta 196:77–83

    Article  CAS  Google Scholar 

  • Lea PJ, Forde BG (1994) The use of mutants and transgenic plants to study amino acid metabolism. Plant Cell Environ 17:541–556

    Article  CAS  Google Scholar 

  • Lea P, Miflin B (1974) Alternative route for nitrogen assimilation in higher plants. Nature 251:614–616

    Article  CAS  PubMed  Google Scholar 

  • Lee RB, Purves JV, Ratcliffe RG, Saker LR (1992) Nitrogen assimilation and the control of ammonium and nitrate absorption by maize roots. J Expt Bot 43:1385–1396

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Malamy J, Ryan K (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127:899–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. AnnBot 105:1141–1157

    Google Scholar 

  • Melino VJ, Fiene G, Enju A, Cai J, Buchner P, Heuer S (2015) Genetic diversity for root plasticity and nitrogen uptake in wheat seedling. Funct Plant Biol 42:942–956

    Article  CAS  Google Scholar 

  • Meyer C, Stitt M (2001) Nitrate reductase and signallin. In: Lea PJ, Morot-Gaudry JF (Eds) Plant nitrogen. Springer, New York

    Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • MSTATC (1990) A microcomputer program for the design, management, and analysis of research agronomic experiments. Michigan State University, East Lansing

    Google Scholar 

  • Muller B, Tilliard P, Touraine B (1995) Nitrate fluxes in soybean seedling roots and their response to amino acids: an approach using 15N. Plant Cell Environ 18:1267–1279

    Article  CAS  Google Scholar 

  • Müller B, Touraine B (1992) Inhibition of NO3 —uptake by various phloem translocated amino acids in soybean seedlings. J Expt Bot 43:617–623

    Article  Google Scholar 

  • Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M et al (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16:2433–2447

    Article  PubMed  PubMed Central  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  CAS  PubMed  Google Scholar 

  • Negi M, Sanagala R, Rai V, Jain A (2016) Deciphering phosphate deficiency-mediated temporal effects on different root traits in rice grown in a modified hydroponic system. Front Plant Sci 7:550

    PubMed  PubMed Central  Google Scholar 

  • Noguero M, Lacombe B (2016) Transporters involved in root nitrate uptake and sensing by Arabidopsis. Front Plant Sci 7:1391

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G et al (2016) Nitrate transport, sensing, and responses in plants. Mol Plant 9:837–856

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y (2017) Shoot-to-root mobile polypeptide involved in systemic regulation of nitrogen acquisition. Nat Plants. https://doi.org/10.1038/nplants.2017

    Article  PubMed  Google Scholar 

  • Quesada A, Krapp A, Trueman LJ, Daniel-Vedele F, Ferna´ndez E, Forde BG et al (1997) PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high affinity nitrate transporters of the crnA family. Plant Mol Biol 34:265–274

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E et al (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  Google Scholar 

  • Ruffel S, Gojon A, Lejay L (2014) Signal interactions in the regulation of root nitrate uptake. J Expt Bot 65:5509–5517

    Article  CAS  Google Scholar 

  • Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha SK, Rani M, Bansal N, Venkatesh K, Mandal PK (2015) Nitrate starvation induced changes in root system architecture, carbon-nitrogen metabolism, and miRNAs expression in nitrogen-responsive wheat genotypes. Appl Biochem Biotechnol 177:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Nasholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346:343–346

    Article  CAS  PubMed  Google Scholar 

  • Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V (2015) Post-Flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PLoS ONE 10(3):e0120291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  CAS  PubMed  Google Scholar 

  • Tsay FY, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Gutierrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    Article  PubMed  Google Scholar 

  • Vidmar JJ, Zhuo D, Siddiqi MY, Schoerring JK, Touraine B, Glass ADM (2000) Regulation of high affinity nitrate transporter genes and high affinity nitrate influx by nitrogen pools in plant roots. Plant Physiol 123:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen M et al (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Xing X, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151:472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Yin LP, Li P, Wen B, Taylor D, Berry JO (2007) Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2.1) from wheat root, and its evolutionary relationship to another NRT2 genes. Plant Sci 171:621–631

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature. https://doi.org/10.1038/nature15743

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Gao X, Wang C, Yang G, Cram WJ, He G (2009) Identification of sugar signals controlling the nitrate uptake by rice roots using a noninvasive technique. Z Naturforsch C 64:697–703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by ICAR-NRCPB institutional fund. Authors would like to acknowledge the Project Director of ICAR-NRCPB, New Delhi for his support and encouragement at various levels to execute this work. We are thankful to Dr. Anju M. Singh, Division of Genetics, Indian Agricultural Research Institute, New Delhi, for providing HD-2967 seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Kumar Mandal.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S.K., Tyagi, A. & Mandal, P.K. External Nitrogen and Carbon Source-Mediated Response on Modulation of Root System Architecture and Nitrate Uptake in Wheat Seedlings. J Plant Growth Regul 38, 283–297 (2019). https://doi.org/10.1007/s00344-018-9840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9840-9

Keywords

Navigation