Skip to main content

Development and Growth of Crop Root Systems

  • Chapter
Limitations to Plant Root Growth

Part of the book series: Advances in Soil Science ((SOIL,volume 19))

Abstract

All crops grown from seed initiate root establishment with the emergence of the radicle from each germinating seed. The radicle anchors the seedling for the upward thrust needed in the emergence process and also collects the water required to generate turgor pressure needed for elongation of the emerging shoot. This first root on the plant may become a permanent and important component of the root system in taprooted plants such as cotton (Gossypium hirsutum L.) or it may atrophy or comprise a relatively insignificant fraction of the root system, as it does in cereals like corn (Zea mays L.). In either case, radicle growth, the first step in plant establishment, is especially important because of its role in water absorption during emergence and early stand establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson-Taylor, G., and C. Marshall. 1983. Root-tiller interrelationships in spring barley (Hordeum distichum(L.) Lam.). Ann. Bot.51: 47–58.

    Google Scholar 

  • Barber, D.A., and J.K. Martin. 1976. The release of organic substances by cereal roots into soil. New Phytol. 76: 69–80.

    CAS  Google Scholar 

  • Barber, S.A. 1979. Corn residue management and soil organic matter. Agron. J.71: 625–627.

    Google Scholar 

  • Barraclough, P.B. 1984. The growth and activity of winter wheat roots in the field: Root growth of high-yielding crops in relation to shoot growth. J. Agric. Sci. Camb.103: 419–422.

    Google Scholar 

  • Barraclough, P.B., and R.A. Leigh. 1984. The growth and activity of winter wheat roots in the field: The effect of sowing date and soil type on root growth of high-yielding crops. J. Agric. Sci.103: 59–74.

    Google Scholar 

  • Bar-Yosef, B., and J.R. Lambert. 1981. Corn and cotton root growth in response to soil impedance and water potential. Soil Sci. Soc. Am. J.45: 930–935.

    Google Scholar 

  • Bar-Yosef, B., J.R. Lambert, and D.N. Baker. 1982. Rhizos: A simulation of root growth and soil processes. Sensitivity analysis and validation for cotton. Trans. ASAE25: 1268–1273, 1281.

    Google Scholar 

  • Belford, R.K., B. Klepper, and R.W. Rickman. 1987. Studies of intact shoot-root systems of field-grown winter wheat. II. Root and shoot developmental patterns as related to nitrogen fertilizer. Agron. J.79: 310–319.

    Google Scholar 

  • Biondini, M., D.A. Klein, and E.F. Redente. 1988. Carbon and nitrogen losses through root exudation by Agropyron Cristatum, A. Smithii, and Bouteloua Gracilis. Soil Biol. Biochem. 20: 477–482.

    Google Scholar 

  • Blackman, P.G., and W.J. Davies. 1985. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot.36: 39–48.

    Google Scholar 

  • Blakely, L.M., M. Durham, T.A. Evans, and R.M. Blakely. 1982. Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Bot. Gaz.143: 341–352.

    Google Scholar 

  • Borkert, C.M., and S.A. Barber. 1985. Soybean shoot and root growth and phosphorus concentration as affected by phosphorus placement. Soil Sci. Soc. Am. J.49: 152–155.

    CAS  Google Scholar 

  • Brown, S.C., P.J. Gregory, P.J.M. Cooper, and J.D.H. Keatinge. 1989. Root and shoot growth and water use of chickpea (Cicer arietinum) grown in dryland conditions: Effects of sowing date and genotype. J. Agric. Sci.113: 41–49.

    Google Scholar 

  • Buttery, B.R., and J.A. Stone. 1988. Some effects of nitrate and light intensity on soybean root growth and development. Plant Soil106: 291–294.

    CAS  Google Scholar 

  • Buyanovsky, G.A., and G.H. Wagner. 1987. Carbon transfer in a winter wheat (Triticum aestivum)ecosystem. Biol. Fert. Soils5: 76–82.

    Google Scholar 

  • Byrne, J.M., J.M. Byrne, and D.P. Emmitt. 1982. Development and structure of the vascular connection between the primary and lateral root of Lycopersicon esculentum. Am. J. Bot. 69: 287–297.

    Google Scholar 

  • Byrne, J.M., T.C. Pesacreta, and J.A. Fox. 1977. Development and structure of the vascular connection between the primary and secondary root of Glycine max(L.) Merr. Am. J. Bot.64: 946–959.

    Google Scholar 

  • Caradus, J.R. 1981. Root growth of white clover (Trifolium repensL.) lines in glass-fronted containers. New Zeal. J. Agr. Res.24: 43–54.

    Google Scholar 

  • Carr, M.K.V., and S.M. Doods. 1983. Some effects of soil compaction on root growth and water use of lettuce. Exp. Agric.19: 117–130.

    Google Scholar 

  • Christie, E.K. 1975. Physiological responses of semiarid grasses. II. The pattern of root growth in relation to external phosphorus concentration. Aust. J. Agric. Res.26: 437–446.

    Google Scholar 

  • Clark, L.H., and W.H. Harris. 1981. Observations on the root anatomy of rice (Oryza sativaL.). Am. J. Bot.68: 154–161.

    Google Scholar 

  • Clarkson, D.T., and J. Sanderson. 1974. The endodermis and its development in barley roots as related to radial migration of ions and water. InJ. Kolek (Ed.). Structure and Function of Primary Root Tissues. Veda, Publishing House of the Slovark Academy of Sciences, Bratislavia, pp. 87–100.

    Google Scholar 

  • Cornish, P.S., J.R. McWilliam, and H.B. So. 1984. Root morphology, water uptake, growth, and survival of seedlings of ryegrass and phalaris. Aust. J. Agric. Res.35: 479–492.

    Google Scholar 

  • Crossett, R.N., D.J. Campbell, and H.E. Stewart. 1975. Compensatory growth in cereal root systems. Plant Soil. 42: 673–683.

    Google Scholar 

  • Dexter, A.R., and J.S. Hewitt. 1978. The deflection of plant roots. J. Agric. Eng. Res.23: 17–22.

    Google Scholar 

  • Distel, R.A., and O.A. Fernandez. 1988. Dynamics of root growth and decay in two grasses native to semi-arid Argentina. Aust. J. Ecol.13: 327–336.

    Google Scholar 

  • Drew, M.D., and L.R. Saker. 1975. Nutrient supply and the growth of the seminal root system in barley. II. Localized compensatory increases in lateral root growth and rates of nutrient uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot.26: 79–90.

    CAS  Google Scholar 

  • Edwards, C.A., and J.R. Lofty. 1978. The influence of arthropods and earthworms upon root growth of direct drilled cereals. J. Appl. Ecol.15: 789–795.

    Google Scholar 

  • Ehlers, W., U. Kopke, F. Hesse, and W. Bohm. 1983. Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Till. Res.3: 261–275.

    Google Scholar 

  • Ennik, G.C., and T.B. Hofman. 1983. Variation in the root mass of ryegrass types and its ecological consequences. Neth. J. Agric. Sci.31: 325–334.

    Google Scholar 

  • Feil, B., and G. Geisler. 1988. Root growth of seedlings of old and new winter wheat cultivars and a spelt wheat at varying levels of nitrogen. J. Agron. Crop Sci.161: 264–272.

    Google Scholar 

  • Fiscus, E.L. 1981. Analysis of the components of area growth of bean root systems. Crop Sci. 21: 909–914.

    Google Scholar 

  • Fritsch, R. 1977. Root anatomy of TriticumL. and AegilopsL. (Gramineae). Flora Bd. 166: 289–326.

    Google Scholar 

  • Geisler, G., and N. Daroussis. 1981. Influence of pore size distribution, water content, and air filled pore volume on morphological characters of the root system and growth of maize, broad beans, and barley. J. Agron. Crop Sci.150: 457–473.

    Google Scholar 

  • Geisler, G., and B. Krutzfeldt. 1983. Investigations into the effect of “nitrogen” on the morphology, dry matter formation, and nutrient uptake efficiency of the root systems of maize, spring barley, and field bean varieties, having regard to temperature conditions. I. Root morphology. J. Agron. Crop Sci.152: 336 - 353.

    Google Scholar 

  • Geisler, G., and B. Krutzfeldt. 1984. Wirkungen von Stickstoff auf die Morphologie und die Trockenmassebildung der Wurzelsysteme von Mais-, Sommergersten- und Ackerbohnen-Sorten unter Berucksichtigung der Temperatur: 2. Trockenmassebildung. J. Agron. Crop Sci.153: 90–104.

    Google Scholar 

  • Gerard, C.J. 1971. Influence of osmotic potential, temperature, and calcium on growth of plant roots. Agron. J.63: 555–558.

    CAS  Google Scholar 

  • Gerwitz, A., and E.R. Page. 1974. An empirical mathematical model to describe plant root systems. J. Appl. Ecol.11: 773–781.

    Google Scholar 

  • Jauregui, M.A., and H.M. Reisenauer. 1982. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci. Soc. Am. J.46: 314–317.

    CAS  Google Scholar 

  • Johnson, I.R., and J.H.M. Thornley. 1983. Plant Cell Environ. 6: 721–729.

    Google Scholar 

  • Jones, C.A. 1983. Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J.47: 1208–1211.

    Google Scholar 

  • Jordan, M.-O. 1987. Growth and development of the corn root system. I. Importance of some parameters concerning the plant. Agronomie7: 365–371.

    Google Scholar 

  • Jordan, W.R., M. McCrary, and F.R. Miller. 1979. Compensatory growth in the crown root system of sorghum. Agron. J.71: 803–806.

    Google Scholar 

  • Jupp, A.P., and E.I. Newman. 1987. Morphological and anatomical effects of severe drought on the roots of Lolium perenneL. New Phytol. 105: 393–402.

    Google Scholar 

  • Kahn, B.A., and P.J. Stoffella. 1987. Root morphological characteristics of field- grown cowpeas. J. Am. Soc. Hort. Sci.112: 402–406.

    Google Scholar 

  • Kaigama, B.K., I.D. Teare, L.R. Stone, and W.L. Powers. 1977. Root and top growth of irrigated and nonirrigated grain sorghum. J. Crop Sci.17: 555–559.

    Google Scholar 

  • Kaspar, T.C., C.D. Stanley, and H.M. Taylor. 1978. Soybean root growth during the reproductive stages of development. Agron. J.70: 1105–1107.

    Google Scholar 

  • Kaspar, T.C., H.M. Taylor, and R.M. Shibles. 1984. Taproot-elongation rates of soybean cultivars in the glasshouse and their relation to field rooting depth. Crop Sci. 24: 916–920.

    Google Scholar 

  • Kaspar, T.C., D.G. Woolley, and H.M. Taylor. 1981. Temperature effect on the inclination of lateral roots of soybeans. Agron. J.73: 383–386.

    Google Scholar 

  • Kawata, S., J. Harada, and K. Yamazaki. 1978. On the number and the diameter of crown root primordia in rice plants. Japan. J Crop Sci.47: 644–654.

    Google Scholar 

  • Kawata, S., O. Sasaki, and K. Yamazaki. 1977. On the structure of the crown root and the lateral root, and the vessel connection between them, in rice plants. Japan. J. Crop Sci.46: 569–579.

    Google Scholar 

  • Keith, H., and J.M. Oades. 1986. Input of carbon to soil from wheat plants. Soil Biol. Biochem.18: 445–449.

    CAS  Google Scholar 

  • Klasova, A., J. Kolek, and J. Klas. 1972. Time dynamics of primary root branching in Pisum sativumL. Biologia Plantarum (Praha)14: 249–253.

    Google Scholar 

  • Klepper, B. 1983. Managing root systems for efficient water use: Axial resistances to flow in root systems—anatomical considerations. In Limitations to Efficient Water Use in Crop Production. ASA, CSS A, and SSSA, Madison, Wisconsin, pp. 115–125.

    Google Scholar 

  • Klepper, B. 1990. Root growth and water uptake. InB.A. Stewart and D.R. Nielsen (Eds.). Irrigation of Agricultural Lands. Am. Soc. Agron., Madison, Wisconsin, pp. 281–322.

    Google Scholar 

  • Klepper, B. 1991. Root-shoot relationships. InY. Waisel, U. Kafkafi, and A. Eshel (Eds.). Plant Roots: The Hidden Half. Marcel Dekker, New York, pp. 265–286.

    Google Scholar 

  • Klepper, B., and R.W. Rickman. 1990. Modeling root growth and function. Adv. Agron.44: 113–131.

    Google Scholar 

  • Klepper, B., and R.W. Rickman. 1991. Predicting root development of crop plants. InTom Hodges (Ed.). Physiological Aspects of Predicting Crop Phenology. CRC Press, Boca Raton, FL, pp. 85–99.

    Google Scholar 

  • Klepper, B., R.K. Belford, and R.W. Rickman. 1984. Root and shoot development in winter wheat. Agron. J.76: 117–122.

    Google Scholar 

  • Kuchenbuch, R., W. Weigelt, and J. Jung. 1988. Modification of root-shoot-ratio of sunflower (Helianthus annuus, L.) by nitrogen supply and a triazole-type plant growth regulator. Z. Pflanzenernahr. Bodenk.151: 391–394.

    CAS  Google Scholar 

  • Leopold, A.C., and S.H. Wettlaufer. 1988. Diagravitropism in corn roots. Plant Physiol. 87: 803–805.

    PubMed  CAS  Google Scholar 

  • Macduff, J.H., A. Wild, M.J. Hopper, and M.S. Dhanoa. 1986. Effects of temperature on parameters of root growth relevant to nutrient uptake: Measurements on oilseed rape and barley grown in flowing nutrient solution. Plant Soil94: 321–332.

    Google Scholar 

  • MacLeod, R.D., and A. Thompson. 1979. Development of lateral root primordia in Vicia faba, Pisum sativum, Zea mays, and Phaseolus vulgaris: Rates of primordium formation and cell doubling times. Ann. Bot.44: 435–449.

    Google Scholar 

  • Mallory, T.E., S.-H. Chiang, E.G. Cutter, and E.M. Gifford, Jr. 1970. Sequence and pattern of lateral root formation in five selected species. Am. J. Bot.57: 800–809.

    Google Scholar 

  • Matsumoto, H., K. Okada, and E. Takahashi. 1979. Excretion products of maize roots from seedling to seed development stage. Plant Soil53: 17–26.

    CAS  Google Scholar 

  • May, L.H., F.H. Chapman, and D. Aspinall. 1965. Quantitative studies of root development. I. The influence of nutrient concentration. Aust. J. Biol. Sci.18: 25–35.

    CAS  Google Scholar 

  • Mcintosh, M.S., and D.A. Miller. 1980. Development of root-branching in three alfalfa cultivars. Crop Sci. 20: 807–809.

    Google Scholar 

  • Mcintosh, M.S., and D.A. Miller. 1981. Genetic and soil moisture effects on the branching-root trait in alfalfa. Crop Sci. 21: 15–18.

    Google Scholar 

  • Merckx, R., J.H. van Ginkel, J. Sinnaeve, and A. Cremers. 1986. Plant-induced changes in the rhizosphere of maize and wheat. I. Production and turnover of root-derived material in the rhizosphere of maize and wheat. Plant Soil96: 85–93.

    Google Scholar 

  • Milchunas, D.G., W.K. Lauenroth, J.S. Singh, C.V. Cole, and H.W. Hunt. 1985. Root turnover and production by 14C dilution: Implications of carbon partitioning in plants. Plant Soil88: 353–365.

    CAS  Google Scholar 

  • Mirhadi, M.J., and Y. Kobayashi. 1980. The relationship between the growth of different plant organs of grain sorghum hybrid H-726. Japan. J. Crop Sci.49: 420–427.

    Google Scholar 

  • Mitchell, R.L., and W.J. Russell. 1971. Root development and rooting patterns of soybean (Glycine max(L.) Merrill) evaluated under field conditions. Agron. J.63: 313–319.

    Google Scholar 

  • Mosher, P.N., and M.H. Miller. 1972. Influence of soil temperature on the geotropic response of corn roots (Zea maysL.). Agron. J.64: 459–462.

    Google Scholar 

  • Nambiar, E.K.S., G.D. Bowen, and R. Sands. 1979. Root regeneration and plant water status of Pinus radiataD. Don seedlings transplanted to different soil temperatures. J. Exp. Bot.30: 1119–1131.

    Google Scholar 

  • Newman, P.R., and L.E. Moser. 1988. Seedling root development and morphology of cool-season and warm-season forage grasses. Crop Sci. 28: 148–151.

    Google Scholar 

  • O’Toole, J.C., and W.L. Bland. 1987. Genotypic variation in crop plant root systems. Adv. Agron.41: 91–145.

    Google Scholar 

  • Passioura, J.B. 1985. Roots and water economy of wheat. InW. Day and R.K. Atkin (Eds.). Wheat Growth and Modeling. Plenum, New York, pp. 185–198.

    Google Scholar 

  • Picard, D., M.-O. Jordan, and R. Trendel. 1985. Rate of appearance of primary roots of maize. I. Detailed study of one cultivar at one site. Agronomie 5: 667–676.

    Google Scholar 

  • Pilet, P.-E., and P.W. Barlow. 1987. The role of abscisic acid in root growth and gravireaction: A critical review. Plant Growth Regulation6: 217–265.

    CAS  Google Scholar 

  • Pinkerton, A., and J.R. Simpson. 1981. Effects of subsoil acidity on the shoot and root growth of some tropical and temperate forage legumes. Aust. J. Agric. Res.32: 453–463.

    CAS  Google Scholar 

  • Porter, J.R., B. Klepper, and R.K. Belford. 1986. A model (WHTROOT) which synchronizes root growth and development with shoot development for winter wheat. Plant Soil92: 133.

    Google Scholar 

  • Pulgarin, A., J. Navascues, P.J. Casero, and P.G. Lloret. 1988. Branching pattern in onion adventitious roots. Am. J. Bot.75: 425–432.

    Google Scholar 

  • Rapoport, H.F., and R.S. Loomis. 1986. Structural aspects of root thickening in Beta vulgarisL.: Comparative thickening in sugarbeet and chard. Bot. Gaz.147: 270–277.

    Google Scholar 

  • Rapoport, H.F., and R.S. Loomis. 1987. Independence of development in shoot and storage root of Beta vulgaris. Bot. Gaz. 148: 342–345.

    Google Scholar 

  • Rapoport, H.F., and R.L. Travis. 1984. Alfalfa root growth, cambial activity, and carbohydrate dynamics during the regrowth cycle. Crop Sci. 24: 899–903.

    CAS  Google Scholar 

  • Richards, B.G., and E.L. Greacen. 1986. Mechanical stresses on an expanding cylindrical root analogue in granular media. Aust. J. Soil Res.24: 393–404.

    Google Scholar 

  • Rickman, R.W., B. Klepper, and R.K. Belford. 1985. Developmental relationships among roots, leaves and tillers in winter wheat. InW. Day and R.K. Atkin (Eds.). Wheat Growth and Modeling. Plenum Publishing Corporation, New York, pp. 83–98.

    Google Scholar 

  • Rickman, R.W., B. Klepper, and R.K. Belford. 1985. Developmental relationships among roots, leaves and tillers in winter wheat. InW. Day and R.K. Atkin (Eds.). Wheat Growth and Modeling. Plenum Publishing Corporation, New York, pp. 83–98.

    Google Scholar 

  • Robards, A.W., and M.E. Robb. 1972. Uptake and binding of uranyl ions by barley roots. Science178: 980–982.

    PubMed  CAS  Google Scholar 

  • Robards, A.W., S.M. Jackson, D.T. Clarkson, and J. Sanderson. 1973. The structure of barley roots in relation to the transport of ions into the stele. Protoplasma77: 291–311.

    Google Scholar 

  • Rougier, M., and A. Chaboud. 1985. Mucilages secreted by roots and their biological function. Israeli. Botany34: 129–146.

    Google Scholar 

  • Saugy, M., G. Mayor, and P.-E. Pilet. 1989. Endogenous ABA in growing maize roots: light effects. Plant Physiol89: 622–627.

    PubMed  CAS  Google Scholar 

  • Schulze, E.-D. 1983. Root-shoot interactions and plant life forms. Neth. J. Agric. Sci.4: 291–303.

    Google Scholar 

  • Scott, M.G., and R.L. Peterson. 1979. The root endodermis in Ranunculus acris. I. Structure and ontogeny. Can. J. Bot.57: 1040–1062.

    Google Scholar 

  • Sivakumar, M.V.K., H.M. Taylor, and R.H. Shaw. 1977. Top and root relations of field-grown soybeans. Agron. J.69: 470–473.

    Google Scholar 

  • Skiles, J.W., J.D. Hanson, and W.J. Parton. 1982. InW.K. Lavenrock, G.V. Skogerboe, and M. Flug (Eds.). Analysis of Ecological Systems: State of the Art in Ecological Modeling. Elsevier, Amsterdam, pp. 467–473.

    Google Scholar 

  • Smith, D.L.O. 1987. Measurement, interpretation and modelling of soil compaction. Soil Use Manage. 3: 87–93.

    Google Scholar 

  • Smith, T.L., G.A. Peterson, and D.H. Sander. 1983. Nitrogen distribution in roots and tops of winter wheat. Agron. J.75: 1031–1034.

    CAS  Google Scholar 

  • Stafford, R.E., and B.L. McMichael. 1990. Primary root and lateral root development in guar seedlings. Environ. Exp. Bot.30: 27–34.

    Google Scholar 

  • Stone, J.A., and B.R. Buttery. 1986. Some effects of nitrate on soybean root development. Can. J. Plant Sci.66: 505–510.

    Google Scholar 

  • Taylor, H.M., M.G. Huck, B. Klepper, and Z.F. Lund. 1970. Measurement of soil-grown roots in a rhizotron. Agron. J.62: 807–809.

    Google Scholar 

  • Vancura, V., Z. Prikryl, L. Kalachova, and M. Wurst. 1977. Some quantitative aspects of root exudation. Soil Organisms as Components of Ecosystems. Ecol. Bull. (Stockholm)25: 381–386.

    CAS  Google Scholar 

  • Vincent, C.D., and P.J. Gregory. 1989a. Effects of temperature on the development and growth of winter wheat roots. I. Controlled glasshouse studies of temperature, nitrogen and irradiance. Plant Soil119: 87–97.

    Google Scholar 

  • Vincent, C.D., and P.J. Gregory. 1989b. Effects of temperature on the development and growth of winter wheat roots. II. Field studies of temperature, nitrogen and irradiance. Plant Soil119: 99–110.

    Google Scholar 

  • Vos, J., and J. Groenwold. 1986. Root growth of potato crops on a marine-clay soil. Plant Soil94: 17–33.

    Google Scholar 

  • Walters, D.R., and P.G. Ayres. 1981. Growth and branching pattern of roots of barley infected with powdery mildew. Ann. Bot.47: 159–162.

    Google Scholar 

  • Yoshida, S., D.P. Bhattacharjee, and G.S. Cabuslay. 1982. Relationship between plant type and root growth in rice. Soil Sci. Plant Nutri.28: 473–482.

    Google Scholar 

  • Zhang, J., and W.J. Davies. 1989. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 12: 73–81.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Klepper, B. (1992). Development and Growth of Crop Root Systems. In: Hatfield, J.L., Stewart, B.A. (eds) Limitations to Plant Root Growth. Advances in Soil Science, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2894-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2894-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7711-8

  • Online ISBN: 978-1-4612-2894-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics