Skip to main content
Log in

Hemin Through the Heme Oxygenase 1/Ferrous Iron, Carbon Monoxide System Involved in Zinc Tolerance in Oryza Sativa L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Several pharmacological experiments were performed to investigate the possible roles of heme oxygenase 1 (HO1) and its catalytic products on hemin-induced attenuation of excess zinc toxicity. The results showed that hemin markedly reduced concentrations of zinc in rice seedlings (including roots and shoots); this effect may be achieved by down-regulating the relative expression of OsZIP1, OsZIP3, OsZIP7, and OsZIP8. However, zinc protoporphyrin IX (Znpp, an HO1 inhibitor) application could reverse hemin-induced decreases in zinc accumulation and upregulate the relative expression of the above four genes. These results showed that HO1 is indeed involved in the mitigation of zinc stress. The following experiments were conducted to illustrate the contributive effect of different hemin by-products in the hemin-mediated attenuating effect. The results showed that bilirubin (BR) does not have any alleviative effect, whereas carbon monoxide (CO) has a similar effect as hemin; the alleviative effect of ferrous ion (Fe2+) is even better than that of hemin. Altogether, these findings suggested that hemin, through the HO1/Fe2+, CO system, may reduce zinc accumulation in rice seedlings and ultimately strengthen Zn tolerance of rice seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson JA, Egesten A, Cardell LO (2002) Hemin, a heme oxygenase substrate analog, inhibits the cell surface expression of CD11b. and CD66b on human neutrophils. Allergy 57(8):718–722

    Article  PubMed  CAS  Google Scholar 

  • Bai XG, Chen JH, Kong XX, Todd CD et al (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53:710–720

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Yannarelli GG, Noriega GO et al (2008) Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress. Biometals 21(4):433–441

    Article  PubMed  CAS  Google Scholar 

  • Barañano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99:16093–16098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122–130

    Article  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201

    Article  CAS  Google Scholar 

  • Becker EM, Cardoso DR, Skibsted LH (2011) Quenching of excited states of red-pigment zinc protoporphyrin IX by hemin and natural reductors in dry-cured hams. Eur Food Res Technol 232(232):343–349

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP et al (2007) Zinc in plants: Tansley review. New Phytol 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2000) Biochemistry and molecular biology of plants, 1th edn. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Caldelas C, Weiss DJ (2016) Zinc Homeostasis and isotopic fractionation in plants: a review. Plant Soil 411(1):1–30

    Google Scholar 

  • Chen Q, Zhang X, Liu Y et al (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264

    Article  CAS  Google Scholar 

  • Cui W, Shen W (2012) RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol 80:219–235

    Article  PubMed  CAS  Google Scholar 

  • Cui WT, Zhang J, Xuan W et al (2013) Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa. J Plant Physiol 170:1328–1336

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Bhoo SH, Durski AMWalker JM et al (2001) The heme-oxygenase family required for phytochrome chromophorebiosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126(2):656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Disante KB, Fuentes D, Cortina J (2010) Sensitivity to zinc of Mediterranean woody species important for restoration. Sci Total Environ 408:2216–2225

    Article  PubMed  CAS  Google Scholar 

  • Disante KB, Cortina J, Vilagrosa A et al (2013) Alleviation of Zn toxicity by low water availability. Physiol Plant 150(3):412–424

    Article  PubMed  CAS  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    Article  PubMed  CAS  Google Scholar 

  • Elich TD, Mcdonagh AF, Palma LA et al (1989) Phytochrome chromophore biosynthesis. Treatment of tetrapyrrole-deficient Avena explants with natural and non-natural bilatrienes leads to formation of spectrally active holoproteins. J Biol Chem 264(1):183

    PubMed  CAS  Google Scholar 

  • Emborg TJ, Walker JM, Noh B et al (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140(3):856–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foresti R, Hammad J, Clark JE et al (2010) Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol 142(3):453–460

    Article  CAS  Google Scholar 

  • Fu G, Zhang L, Cui W, Wang Y, Shen W, Ren Y, Zheng T (2011) Induction of heme oxygenase-1 with β-CD-hemin complex mitigates cadmium-induced oxidative damage in the roots of Medicago sativa. Plant Soil 345:271–285

    Article  CAS  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R et al (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155(4):1893–1907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M et al (2005) Characterization of a Glomus intraradices, gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42(2):130–140

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochem Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML, Eidet D (1999) Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2(3):244–249

    Article  PubMed  CAS  Google Scholar 

  • Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11(2):76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159(2):341–350

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Xuan W, Yu T et al (2007) Exogenous Hematin Alleviates Mercury-induced Oxidative Damage in the Roots of Medicago sativa. J Integr Plant Biol 49(12):1703–1713

    Article  CAS  Google Scholar 

  • Han Y, Zhang J, Chen XY, Gao ZZ, Xuan W, Xu S, Ding X, Shen WB (2008) Carbon monoxide alleviates cadmiuminduced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166

    PubMed  CAS  Google Scholar 

  • Han B, Zheng Y, Xie Y, Li N, Jin C, Shen W (2014) Arabidopsis, hy1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 7(2):388–403

    Article  PubMed  CAS  Google Scholar 

  • Hyvelin JM, Maurel B, Uzbekov R et al (2010) Hemin prevents in-stent stenosis in rat and rabbit models by inducing heme-oxygenase-1. J Vasc Surg 51(2): 417–428

    Article  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK et al (2005) OsZIP4, a novel zincregulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22:391–399

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Zhu K, Cui W et al (2013a) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36(5):956

    Article  PubMed  CAS  Google Scholar 

  • Jin Q, Zhu K, Xie Y, Shen W (2013b) Heme oxygenase-1 is involved in ascorbic acid-induced alleviation of cadmium toxicity in root tissues of Medicago sativa. Plant Soil 366(1–2):605–616

    Article  CAS  Google Scholar 

  • Katoh Y, Nemoto N, Tanaka M et al (1983) Inhibition of benzo[a]pyrene mutagenesis in Chinese hamster V79 cells by hemin and related compounds. Mutat Res 121(2):153–157

    Article  PubMed  CAS  Google Scholar 

  • Kováčik J, Babula P, Klejdus B et al (2014) Comparison of oxidative stress in four Tillandsia, species exposed to cadmium. Plant Physiol Biochem 80:33–40

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim S, Lee J, Guerinot M, An G (2010b) Zinc deficiencyinducible OsZIP8 encodes a plasma membrane-localized zinc transporterrice. Mol Cells 29:551–558

    Article  PubMed  CAS  Google Scholar 

  • Li H, Jiang M, Li LC, Li N, Yang ZM (2012) BjHO-1, is involved in the detoxification of heavy metal in India mustard (Brassica juncea). Biometals 25(6):1269–1279

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xu S, Ling T, Xu L, Shen W (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Chen J, Wang GH et al (2015) Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 400(1–2):1–16

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo YM, Christie P, Baker AJM (2000) Soil solution Zn and pH dynamics in non- rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd contaminated soil. Chemosphere 41:161–164

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2(10):2557–2568

    Article  PubMed  CAS  Google Scholar 

  • Maines MD, Kappas A (1976) The induction of heme oxidation in various tissues by trace metals: evidence for the catabolism of endogenous heme by hepatic heme oxygenase. Ann Clin Res 8(17):39

    PubMed  CAS  Google Scholar 

  • Mills RF, Francini A, da Rocha PSF, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    Article  PubMed  CAS  Google Scholar 

  • Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144

    Article  CAS  Google Scholar 

  • Montellano PROD (2000) The mechanism of heme oxygenase. Curr Opin Chem Biol 4(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochem Biophys Res Commun 323:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Noriega G, Cruz DS, Batlle A et al (2012) Heme oxygenase is involved in the protection exerted by jasmonic acid against cadmium stress in soybean roots. J Plant Growth Regul 31(1):79–89

    Article  CAS  Google Scholar 

  • Nriagu JO (1996) A history of global metal pollution. Science 272(12):223–224

    Article  CAS  Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B et al (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8(12):e1003120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potocki S, Valensin D, Kozlowski H (2014) The specificity of interaction of Zn(2+), Ni(2+) and Cu(2+) ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans 43(26):10215–10223

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruano A, Poschenrieder C, Barcelo J (1988) Growth and ´biomass partitioning in zinc-toxic bush beans. J Plant Nutr 11:577–588

    Article  CAS  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13(4):905–927

    Google Scholar 

  • Salloum H (2008) Rice: The main staple for half of mankind. Countrys Small Stock J 92(5):85

    Google Scholar 

  • Sander A, Kretzer S, Bredt W et al (2000) Hemin-dependent growth and hemin binding of Bartonella henselae. Fems Microbiol Lett 189(1):55–59

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Yamaji N, Ma JF (2014) Overexpression of oshma3 enhances cd tolerance and expression of zn transporter genes in rice. J Exp Bot 65(20):6013–6021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanmugam V, Lo JC, Wu CL, Wang SL, Lai CC, Connolly EL et al (2011) Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana—the role in zinc tolerance. New Phytol 190:125–137

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam V, Tsednee M, Yeh K (2012) Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69(6):1006–1017

    Article  PubMed  CAS  Google Scholar 

  • Shanmugam V, Lo JC, Yeh KC (2013) Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front Plant Sci 4(4):281

    PubMed  PubMed Central  Google Scholar 

  • Song A, Li P, Li Z et al (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344(1):319–333

    Article  CAS  Google Scholar 

  • Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG (2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 55:551–571

    Article  PubMed  CAS  Google Scholar 

  • Wei YY, Zheng Q, Liu ZP, Yang ZM (2011) Regulation of tolerance of chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide. Plant Cell Physiol 52(9):1665–1675

    Article  PubMed  CAS  Google Scholar 

  • Xie YJ, Cui WT, Yuan XX et al (2011) Heme oxygenase-1 is associated with wheat salinity acclimation by modulating reactive oxygen species homeostasis. J Integr Plant Biol 53:653–670

    Article  PubMed  CAS  Google Scholar 

  • Xie YJ, Xu DK, Cui WT et al (2012) Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot 63:3869–3883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie YJ, Mao Y, Xu S et al (2015) Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ 38:129–143

    Article  PubMed  CAS  Google Scholar 

  • Xuan W, Zhu FY, Xu S et al (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148(2): 881–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    Article  PubMed  CAS  Google Scholar 

  • Yannarelli GG, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224(5):1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Li Y, Yuan F, Hu S, He P (2012) Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil 359:85–105

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, Mcgrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

  • Zilli CG, Santa-Cruz DM, Balestrasse KB (2014) Heme oxygenase-independent endogenous production of carbon monoxide by soybean plants subjected to salt stress. Environ Exp Bot 102(6):11–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program (No. 2016YFD0800300) and the National Natural Science Foundation of China (No. 31572169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cui.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Gong, C., Ju, X. et al. Hemin Through the Heme Oxygenase 1/Ferrous Iron, Carbon Monoxide System Involved in Zinc Tolerance in Oryza Sativa L.. J Plant Growth Regul 37, 947–957 (2018). https://doi.org/10.1007/s00344-018-9793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9793-z

Keywords

Navigation