Skip to main content
Log in

Hormonal Sensitivity Decreases During the Progression of Flower Senescence in Lilium longiflorum

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Although lilies (Lilium sp.) are the fourth sold cut flower in the world, much remains to be discovered about the senescence and post-harvest physiology of these ethylene-insensitive flowers. This study investigated the hormonal regulation of flower senescence in Lilium longiflorum with a focus on the possible changes in sensitivity to phytohormones during the progression of tepal senescence. After characterizing the hormonal profile of L. longiflorum ‘White Heaven’ tepals from anthesis to complete wilting, we evaluated the changes in hormonal sensitivity during senescence by application of a combination of gibberellins and cytokinins at various times post anthesis. We observed a progressive loss of sensitivity to the hormonal treatment: from an increase of more than 2 days in flower lifespan when applied one day after anthesis, to a complete loss of vase-life prolongation when treated at the fourth day after anthesis or later. These observations were accompanied by various changes in the underlying hormonal contents, especially in the gibberellins and abscisic acid (ABA) profile, which was dependent on the application time. The results not only confirm the role of gibberellins and cytokinins as inhibitors, and ABA as a promoter of senescence, but also reveal a progressive loss in hormonal sensitivity and a hormonal cross-talk during the progression of senescence in tepals of L. longiflorum. We conclude that both hormonal levels and sensitivity modulate the progression of tepal senescence in L. longiflorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arrom L, Munné-Bosch S (2010) Tocopherol composition in flower organs of Lilium and its variations during natural and artificial senescence. Plant Sci 179:289–295

    Article  CAS  Google Scholar 

  • Arrom L, Munné-Bosch S (2012) Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343–354

    Article  CAS  PubMed  Google Scholar 

  • Ashman TL, Schoen DJ (1994) How long should flowers live? Nature 371:788–791

    Article  CAS  Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  • Basu MM, González-Carranza ZH, Azam-Ali S, Tang S, Shahid AA, Roberts JA (2013) The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Plant Physiol 162:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N (2011) Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci 180:716–725

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ-rather than α-tocopherol alters ethylene signalling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin LJ, Jones M (2007) Nutrient remobilization during pollination-induced corolla senescence in Petunia. Acta Hortic 755:181–190

    Article  CAS  Google Scholar 

  • Chapin LJ, Jones M (2009) Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during Petunia corolla senescence. J Exp Bot 60:2179–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hunter DA, Ferrante A, Vernieri P, Reid MS (2004) Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus ‘Dutch Master’). Physiol Plant 121:313–321

    Article  CAS  PubMed  Google Scholar 

  • Jones ML (2013) Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AoB Plant 5:plt023

    Article  Google Scholar 

  • Jones ML, Woodson WR (1997) Pollination-induced ethylene in carnation. Role of stylar ethylene in corolla senescence. Plant Physiol 115:205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2007) Plant systematics: a phylogenetic approach, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Karagiannis CS, Pappelis AJ (1994) Effect of ethylene on selective ribosomal cistron regulation in quiescent and senescent onion leaf base tissue. Mech Ageing Dev 75:141–149

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Rozhon W, Poppenberger B (2013) The role of hormones in the aging of plants—a mini review. Gerontology 60:49–55

    Article  PubMed  Google Scholar 

  • Lay-Yee M, Stead AD, Reid MS (1992) Flower senescence in day-lily (Hemerocallis). Physiol Plant 86:308–314

    Article  CAS  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Arrom L, Mariotti L, Battelli R, Picciarelli P, Kille P, Stead T, Munné-Bosch S, Rogers HJ (2015) Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies. J Exp Bot 66:945–956

    Article  CAS  PubMed  Google Scholar 

  • Miller WB (2014) Postharvest of Lilium: experiment to Industry adaptation. Acta Hortic 1027:87–96

    Article  Google Scholar 

  • Mueller-Roeber B, Balazadeh S (2014) Auxin and its role in plant senescence. J Plant Growth Regul 33:21–33

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Meth 7:37

    Article  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Func Plant Biol 31:203–216

    Article  Google Scholar 

  • O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574

    Article  PubMed  Google Scholar 

  • Overmyer K, Brosché M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Penfold CA, Buchanan-Wollaston V (2014) Modelling transcriptional networks in leaf senescence. J Exp Bot 65:3859–3873

    Article  CAS  PubMed  Google Scholar 

  • Ranwala AP, Miller WB (1998) Giberellin4+7, benzyladenine, and supplemental light improve postharvest leaf and flower quality of cold-stored “Star Gazer” hybrid lilies. J Am Soc Hortic Sci 123:563–568

    CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ (2012) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ 35:217–233

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ (2013) From models to ornamentals: how is flower senescence regulated? Plant Mol Biol 82:563–574

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ, Munné-Bosch S (2016) Production and scavenging of reactive oxygen species and redox signalins during leaf and flower senescence: similar but different. Plant Physiol 171:1560–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahir W, Tahir I (2011) Flower senescence-strategies and some associated events. Bot Rev 77:152–184

    Article  Google Scholar 

  • Shibuya K, Niki T, Ichimura K (2013) Pollination induces autophagy in petunia petals via ethylene. J Exp Bot 64:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead AD, van Doorn WG (1994) Strategies of flower senescence – a review. In: Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 215–238

    Chapter  Google Scholar 

  • van Doorn WG (2001a) Does ethylene treatment mimic the effect of pollination on floral lifespan and attractiveness? Ann Bot 89:375–383

    Article  Google Scholar 

  • van Doorn WG (2001b) Categories of petal senescence and abscission: a re-evaluation. Ann Bot 87:447–456

    Article  Google Scholar 

  • van Doorn WG (2011) The postharvest quality of cut lily flower and potted lily plants. Acta Hortic 900:255–264

    Article  Google Scholar 

  • van Doorn WG, Han SS (2011) Postharvest quality of cut lily flower. Postharvest Biol Tecnol 62:1–6

    Article  Google Scholar 

  • van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  Google Scholar 

  • Verlinden S (2003) Changes in the mineral nutrient concentrations in petunia corollas during development and senescence. HortScience 38:71–74

    CAS  Google Scholar 

  • Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals-morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    Article  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Franklin KA, Ougham HJ, Thomas H, Scott IM (1999a) Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll a/b-binding protein. J Exp Bot 50:1677–1682

    CAS  Google Scholar 

  • Zavaleta-Mancera HA, Franklin KA, Ougham HJ, Thomas H, Scott IM (1999b) Regreening of senescent Nicotiana leaves. II. Redifferentiation of plastids. J Exp Bot 50:1683–1689

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Javier A. Miret, Maren Müller, Servei de Camps Experimentals and Serveis Científico-tècnics from the University of Barcelona for assistance. This work was supported by the Catalan Government (ICREA Academia Award given to S.M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Munné-Bosch.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cubría-Radío, M., Arrom, L., Puig, S. et al. Hormonal Sensitivity Decreases During the Progression of Flower Senescence in Lilium longiflorum . J Plant Growth Regul 36, 402–412 (2017). https://doi.org/10.1007/s00344-016-9648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9648-4

Keywords

Navigation