Skip to main content
Log in

Involvement of Carbohydrates in Response to Preconditioning Flooding in Two Clones of Populus deltoides Marsh. × P. nigra L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Poplar, a fast-growing species widely used outside its original area of distribution, was evaluated in the present study to verify its tolerance and hardening to waterlogging in anticipation of its implementation in rehabilitation practices for marginal lands subjected to flooding. Three water regimes were applied to the plants, grown in pots, with two clones (I-488 and D-64) with different sensitivities to flooding. These plants included a lot consisting of control plants (C), which were irrigated with good drainage, a non-preconditioned lot (NPr), and a third lot that was preconditioned to flooding (Pr). Furthermore, flooding was imposed on NPr and Pr plants by submerging pots up to 5 cm above the collar for 60 days followed by a 40-day recovery period. At the end of these two periods, shoot dry mass, foliar concentrations of certain ions, soluble sugars, starch and proline, and the relative electrolyte leakage were evaluated. The preconditioning treatment conferred different degrees of hardness on the treated plants compared with NPr plants. Our results revealed that high carbohydrate availability (soluble sugars and starch) is suggested to participate in sustaining membrane integrity which may affect the recuperative potential of Pr plants, notably those of clone I-488, from flooding damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albouchi A, Ghhrir R, El Aouni MH (1997) Endurcissement à la sécheresse et accumulation de glucides solubles et d’acides aminés libres dans les phyllodes d’Acacia cyanophylla Lindl. Ann For Sci 54:155–168

    Article  Google Scholar 

  • Albouchi A, Bedhief S, Zine EL, Abidine A (2006) Influence de cycles répétés de submersion saline et de récupération sur la croissance de deux clones de peuplier hybride. Ann INRGREF 8:1–21

    Google Scholar 

  • Albouchi A, Béjaoui Z, Lamhamedi MS, Abassi M, El Aouni MH (2011) Relations hydriques chez trois clones de peuplier euraméricain soumis à un gradient d’hydromorphie. Geo Eco Trop 35:1–16

    Google Scholar 

  • Armstrong W, Brandle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Béjaoui Z, Albouchi A, Abassi M, Seddik MN, El Aouni MH (2002) Tolérance de divers clones de peuplier existants en Tunisie à la submersion prolongée. Ann INRGREF 5:177–194

    Google Scholar 

  • Béjaoui Z, Albouchi A, Lamhamedi MS, Mejda A, El Aouni MH (2006) Influence d’une hydromorphie modérée ou sévère sur la production de biomasse et les échanges gazeux de plants de peuplier euraméricain. Can J For Res 36:2654–2665

    Article  Google Scholar 

  • Béjaoui Z, Albouchi A, Lamhamedi MS, Mejda A, El Aouni MH (2012) Adaptation and morpho-physiology of three Populus deltoides Marsh. × P. nigra L. clones after preconditioning to prolonged waterlogging. Agrofor Syst 86:433–442

    Article  Google Scholar 

  • Capon SJ, James CS, Williams L, Quinn GP (2009) Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub: Muehlenbeckia florulenta Meisn. (tangled lignum). Environ Exp Bot 66:178–185

    Article  Google Scholar 

  • Chen H, Zamorano MF, Ivanoff D (2013) Effect of deep flooding on nutrients and non-structural carbohydrates of mature Typha domingensis and its post-flooding recovery. Ecol Eng 53:267–274

    Article  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plan Biol 36:665–681

    Article  Google Scholar 

  • Crawford RMM (2008) Plants at the margin ecological limits and climate change. Cambridge University Press, Cambridge 494 pp

    Book  Google Scholar 

  • Dix PJ, Pearce PS (1981) Proline accumulation in NaCl-resistant and sensitive cell lines of Nicotiana sylvestris. Z Pflanzenphysiol Bd 102:243–248

    Article  CAS  Google Scholar 

  • Donald JK, David RC, Mark DC (2013) Survival and growth of a range of Populus clones in central South Carolina USA through age ten: do early assessments reflect longer-term survival and growth trends. Biomass Bioenerg 49:260–272

    Article  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Du KB, Xu L, Tu BK, Shen BX (2010) Influences of soil flooding on ultrastructure and photosynthetic capacity of leaves of one-year old seedlings of two poplar clones. Sci Silvae Sin 46:58–64

    Google Scholar 

  • FAO (2008) FAOStat. http://faostat.fao.org

  • Ferreira CS, Piedade MTF, Franco AC, Goncalves JFC, Junk WJ (2009) Adaptive strategies to tolerate prolonged flooding in seedlings of floodplain and upland populations of Himatanthus sucuuba, a Central Amazon tree. Aquat Bot 90:247–251

    Article  Google Scholar 

  • Foyer C (1988) Feedback inhibition of photosynthesis through source—sink regulation in leaves, Plant Physiol. Biochemistry 26:483–492

    CAS  Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F (2006) Flooding tolerance of Central European tree and shrub species. For Ecol Manag 235:1–13

    Article  Google Scholar 

  • Goggin DE, Colmer TD (2007) Wheat genotypes show contrasting abilities to recover from anoxia in spite of similar anoxic carbohydrate metabolism. J Plant Physiol 164:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Heath M (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  CAS  Google Scholar 

  • Hong-Bo S, Li-Ye C, Cheruth AJ, Chang-Xing Z (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biologies 331:218–220

    Google Scholar 

  • Hossain MA, Sarder NU (2011) Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust J Crop Sci 5(9):1094–1101

    CAS  Google Scholar 

  • Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  • Kavi-Kishor PB, Sangam S, Amrutha RN, Sri-Laxmi P, Naidu KR, Rao S, Reddy Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curl Sci 88(3):424–438

    Google Scholar 

  • Kjeldahl JA (1883) New method for the determination of nitrogen in organic matter. Zeitschreft fur. Analytische Chemie 22:366–1883

    Article  Google Scholar 

  • Koppitz H, Dewender M, Ostendorp W, Schmieder K (2004) Amino acids as indicators of physiological stress in common reed Phragmites australis affected by an extreme flood. Aquat Bot 79:289–292

    Article  Google Scholar 

  • Korn M, Peterek S, Petermock H, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:313–327

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (1984) Effects of flooding on water, carbohydrate, and mineral relations. In: Kozlowski TT (ed) Flooding and Plant Growth. Academic Press, Orlando, pp 165–193

    Chapter  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Kraus TE, Fletcher RA (1994) Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant Cell Physiol 35:45–52

    CAS  Google Scholar 

  • Legnani G, Watkins CB, Miller WB (2010) Effects of hypoxic and anoxic controlled atmospheres on carbohydrates, organic acids, and fermentation products in Asiatic hybrid lily bulbs. Postharvest Biol Technol 56:85–94

    Article  CAS  Google Scholar 

  • Luo FL, Nagel KA, Scharr H, Zeng B, Schurr U, Matsubara S (2011) Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Ann Bot 107:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Alcántara B, Jover S, Quiñones A, Forner-Giner MA, Rodríguez-Gamir J, Legaz F, Primo-Millo E, Iglesias DJ (2012) Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. J Plant Physiol 12:1150–1157

    Article  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martinez CA, Oliva MA (2004) Salinity tolerance in algarrobo seedlings (Prosopis alba G.): growth, osmotic adjustment and nitrate reduction Braz. J Plant Physiol 15:39–46

    Google Scholar 

  • Mielke MS, Almeida AAF, Gomes FP, Agular MAF, Mangabeira PAO (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  • Monneveux P, Nemmar M (1986) Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): Etude de l’accumulation de la proline au cours du cycle de développement. Agronomie 6(6):583–590

    Article  Google Scholar 

  • Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J Agron Crop Sci 189:175–182

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Patel PK, Singh AK, Tripathi N, Yadav D, Hemantaranjan A (2014) Flooding: abiotic constraint limiting vegetable productivity. Adv Plants Agric Res 1(3):00016. http://dx.doi.org/10.15406/apar.2014.01.00016

  • Perata P, Armstrong W, Voesenek LACJ (2011) Plants and flooding stress. New Phytol 190:269–273

    Article  PubMed  Google Scholar 

  • Pereira TS, Lobato AKS, Alves GAR, Ferreira RN, Silva ON, Martins Filho AP, Pereira ES, Sampaio LS (2014) Tolerance to waterlogging in young Euterpe oleracea plants. Photosynthetica 52:186–192

  • Piegay H, Pautou G, Ruffinoni C (2003) Les forêts riveraines des cours d’eau : écologie, fonctions et gestion. Institut pour le Développement Forestier Paris. 463 pp

  • Polacik KA, Maricle BR (2013) Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive riparian shrub. Environ Exp Bot 89:19–27

    Article  Google Scholar 

  • Rayapati J, Stewart CR (1991) Solubilization of proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiol 95:787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard B, Aschi-Smiti S, Gharbi I, Brouquisse R (2006) Cellular and Molecular Mechanisms of Plant Tolerance to Waterlogging. In: Huang B (ed) Plant-Environment Interactions. Taylor and Francis, New York, pp 177–208

    Google Scholar 

  • Schlemmer MR, Francis DD, Shanahan JF, Schepers JS (2005) Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J 97:106–112

    Article  CAS  Google Scholar 

  • Shewfelt RL, Purvis AC (1995) Toward a comprehensive model for lipid peroxidation in plant tissue disorders. HortScience 30:213–218

    CAS  Google Scholar 

  • Singla NK, Jain V, Sawhney SK (2003) Activities of glycoltic enzymes in leaves and roots of contrasting cultivars of sorghum during flooding. Biol Plant 47:555–560

    Article  CAS  Google Scholar 

  • Villar-Salvador P, Ocaña L, Peñuelas JL, Carrasco I (1999) Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlings. Ann For Sci 56:459–465

    Article  Google Scholar 

  • Vreugdenhil SJ, Kramer K, Pelsma T (2006) Effects of flooding duration, frequency and depth on the presence of saplings of six woody species in north-west Europe. For Ecol Manag 236:47–55

    Article  Google Scholar 

  • Yu X, Luo N, Yan J, Tang J, Liu S, Jiang Y (2012) Differential growth response and carbohydrate metabolism of global collection of perennial ryegrass accessions to submergence and recovery following de-submergence. J Plant Physiol 169:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Zhaocy CY, Li J, Li JY, Peng G (2015) Morphological, physiological and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53(1):110–117

    Article  Google Scholar 

  • Zalesny JRS, Wiese AH (2006) Date of shoot collection, genotype, and original shoot position affect early rooting of dormant hardwood cuttings of Populus. Silv Genet 55:169–182

    Google Scholar 

  • Zhang M, Duan L, Tian X, He Z, Li J, Wang B, Li Z (2007) Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol 164(6):709–717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Debbie Christiansen Stowe for critical reading of the manuscript and for her editorial work. Funding for this project was provided by the National Institute for Research in Agricultural Engineering, Water and Forestry (INRGREF Tunis, Tunisia). We gratefully acknowledge the editor and two anonymous reviewers for their constructive criticisms and suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mguis.

Additional information

Zoubeir Béjaoui and Khaled Mguis have contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béjaoui, Z., Mguis, K., Abassi, M. et al. Involvement of Carbohydrates in Response to Preconditioning Flooding in Two Clones of Populus deltoides Marsh. × P. nigra L.. J Plant Growth Regul 35, 492–503 (2016). https://doi.org/10.1007/s00344-015-9555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9555-0

Keywords

Navigation