Skip to main content

Advertisement

Log in

Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In this report we address the changes in the expression of the genes involved in ROS scavenging and ethylene biosynthesis induced by the inoculation of plant growth-promoting rhizobacteria (PGPR) isolated from potato rhizosphere. The two Bacillus isolates used in this investigation had earlier demonstrated a striking influence on potato tuberization. These isolates showed enhanced 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and siderophore production. Potato plants inoculated with these PGPR isolates were subjected to salt, drought, and heavy-metal stresses. The enhanced mRNA expression levels of the various ROS-scavenging enzymes and higher proline content in tubers induced by PGPR-treated plants contributed to increased plant tolerance to these abiotic stresses. Furthermore, the photosynthetic performance indices of PGPR-inoculated plants clearly exhibited a positive influence of these bacterial strains on the PSII photochemistry of the plants. Overall, these results suggest that the PGPR isolates used in this study are able to confer abiotic stress tolerance in potato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1974) Catalases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 673–684

    Chapter  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Bai Y, Zhou X, Mith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strain with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Barriuso J, Ramos SB, Gutierrez Manero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Briantais JM, Dacosta JG, Ducruet JM, Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence F0: a time-resolved analysis. Photosynth Res 48:189–196

    Article  CAS  Google Scholar 

  • Calvo P, Ormeño-Orrillo E, Martínez-Romero E, Zúñiga D (2010) Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol 41:899–906

    Article  Google Scholar 

  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2005) Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. J Plant Nutr 28:1853–1865

    Article  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • de Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009b) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farquhar GD, Wong SC, Evans JR, Hubick KT (1989) Photosynthesis and gas exchange. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 47–69

    Chapter  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Glickman E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    Google Scholar 

  • Gururani MA, Upadhyaya CP, Strasser RJ, Woong YJ, Park SW (2012) Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiol Biochem 58:182–194

    Google Scholar 

  • Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR (2009) Production of the phytohormone indole-3-acetic acid by the estuarine species of the genus Vibrio. Appl Environ Microbiol 75:2253–2258

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberelins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hemavathi, Upadhyaya CP, Nookaraju A, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

  • Hemavathi, Upadhyaya CP, Akula N, Kim HS, Jeon JH, Ho OM, Chun SC, Kim DH, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed 28:105–115

    Article  CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Ritchter T, Boriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Idriss EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Kerovou J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    Google Scholar 

  • Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishing, Dordrecht, pp 315–326

    Google Scholar 

  • Kloepper JW, Reddy MS, Rodríguez-Kabana R, Kenney DS, Kokalis-Burelle N, Martinez-Ochoa N, Vavrina CS (2004a) Application of rhizobacteria in transplant production and yield enhancement. Acta Hortic 631:217–229

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004b) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacteria in agrobiology: crop ecosystems. In: Maheshwari DK (ed) Bacillus as PGPR in crop ecosystems. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Lowry OH, Rogebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nookaraju A, Kappachery S, Yu JW, Park SW (2011) Rhizobacteria influence potato tuberization through enhancing lipoxygenase activity. Am J Potato Res 88:441–449

    Article  CAS  Google Scholar 

  • Owino WO, Manabe Y, Mathooko FM, Kubo Y, Inaba A (2006) Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (Ficus carica L.). Plant Physiol Biochem 44:335–342

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Arulanantham AR, Terry N (1989) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. II. Diurnal changes in sugar phosphates, adenylates and nicotinamide nucleotides. Plant Physiol 90:820–826

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspectives of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Kan FY, Pfeifer U (2003) Diversity and community structure of culturable Bacillus spp. populations in the rhizospheres of transgenic potatoes expressing the lytic peptide cecropin B. Appl Soil Ecol 22:149–158

    Article  Google Scholar 

  • Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157:273–279

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiate L). Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  • Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O’Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria: a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692

    Article  PubMed  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescence transient. In: Behl RK, Punia MS, Lather BP (eds) Crop improvement for food security. SSARM, Hisar, pp 79–126

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Sundara Rao WVB, Bajpai PD, Sharma JP, Subbaiah BV (1963) Solubilization of phosphorus solubilizing organisms using P as tracer and the influence of seed bacterization on the uptake by the crop. J Indian Soc Soil Sci 11:209–219

    CAS  Google Scholar 

  • Tsimilli-Michael M, Eggenberg P, Biro B, Koves-Péchy K, Voros I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307

    Google Scholar 

  • van der Linden CG, Anithakumari AM, van Culemborg M, Visser RGF (2011) Dissecting the genetics of abiotic stress tolerance in potato. In: Plant & animal genomes XIXth conference, San Diego, 15–19 January 2011

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang YJ, Wang HM, Yang CH, Wang Q, Mei RH (2007) Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol Lett 272:206–213

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–512

    Article  PubMed  CAS  Google Scholar 

  • Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions. Acta Hortic 659:363–369

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wonga MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Ganoderma 125:155–166

    Article  Google Scholar 

  • Yang SF, Hoffmann NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  PubMed  CAS  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56:715–721

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported by the Konkuk University research support program. The authors are thankful to Prof. Reto J. Strasser, Bioenergetics Laboratory, University of Geneva, Switzerland, for providing the Plant Efficiency Analyzer used in this study.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gururani, M.A., Upadhyaya, C.P., Baskar, V. et al. Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance. J Plant Growth Regul 32, 245–258 (2013). https://doi.org/10.1007/s00344-012-9292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9292-6

Keywords

Navigation