Skip to main content

Advertisement

Log in

Extracts of the Brown Seaweed Ascophyllum nodosum Induce Gibberellic Acid (GA3)-independent Amylase Activity in Barley

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Extracts of the brown seaweed Ascophyllum nodosum have been used as a biostimulant to promote growth and productivity in a number of agricultural production systems. Although the extracts have been shown to improve seedling emergence and vigor in a variety of plants, including barley, the mechanism(s) of this growth-promoting effect is(are) largely unknown. In our study, A. nodosum extract induced amylase activity in barley seed-halves; a significant difference in amylase activity was observed in seeds without an embryo. The addition of activated charcoal to the treatment media negated the bioactivity of the extracts suggesting the organic nature of bioactive compounds in A. nodosum extracts. The extracts induced amylase activity in a gibberellic acid (GA)-deficient barley mutant (grd2). LC-MS-MS analysis failed to detect the presence of GA3 in the extracts. ABA supplementation of the medium caused a significant reduction of amylase activity in GA-treated seeds compared with those treated with the A. nodosum extract. Taken together, our results suggest that the organic components of A. nodosum extract induce amylase activity independent of GA3 and might act in concert with GA-dependent amylase production leading to enhanced germination and seedling vigor in barley. Being derived from a renewable resource, the bioactive compounds from A. nodosum could be used to improve crop productivity in sustainable agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad Farooqi AH, Shukla YN, Sharma S, Bansal RP (1994) Relationship between gibberellin and cytokinin activity and flowering in Rosa damascena Mill. Plant Growth Regul 14:109–113

    Article  CAS  Google Scholar 

  • Abetz P, Young CL (1983) The effect of seaweed extract sprays derived from Ascophyllum nodosum on lettuce and cauliflower crops. Bot Mar 26:487–492

    Google Scholar 

  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434:217–221

    Article  PubMed  CAS  Google Scholar 

  • Barbosa JP, Teixeira VL, Pereira RC (2004) A dolabellane diterpene from the brown alga Dictyota pfaffii as chemical defense against herbivores. Bot Mar 47:147–151

    Article  CAS  Google Scholar 

  • Bethke PC, Lonsdale JE, Fath A, Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cell. Plant Cell 11:1033–1046

    Article  PubMed  CAS  Google Scholar 

  • Blunden G (1977) Cytokinin activity of seaweed extracts. Marine natural products chemistry. Plenum, New York, pp 337–350

    Google Scholar 

  • Blunden G, Wildgoose PB (1977) The effects of aqueous seaweed extract and kinetin on potato yields. J Science Food Agric 28:121–125

    Article  CAS  Google Scholar 

  • Blunden G, Wildgoose PB, Nicholson FE (1979) The effects of aqueous seaweed extract on sugar beet. Bot Mar 22:539–541

    CAS  Google Scholar 

  • Bokil KK, Mehta VC, Datar DS (1974) Seaweeds as manure II: pot culture manorial experiments on wheat. Phykos 13:1–5

    Google Scholar 

  • Brink RA, Cooper DC (1947) The endosperm in seed development. Bot Rev 13:423–541

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  PubMed  CAS  Google Scholar 

  • Chin T, Beevers L (1970) Changes in endogenous growth regulators in nasturtium leaves during senescence. Planta 92:178–188

    Article  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Culter AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35(3):405–417

    Article  PubMed  CAS  Google Scholar 

  • Cousens R (1984) Estimation of annual production by the intertidal brown alga Ascophyllum nodosum (L.) Le Jolis. Bot Mar 27:217–227

    Google Scholar 

  • Crouch IJ (1990) The effect of seaweed concentrate on plant growth. PhD Thesis. University of Natal, South Africa

    Google Scholar 

  • Crouch IJ, van Staden J (1992) Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J Appl Phycol 4:291–296

    Article  Google Scholar 

  • Davies PJ (1995) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Demir N, Dural B, Yildirim K (2006) Effect of seaweed suspensions on seed germination of tomato, pepper and aubergine. J Biol Sci 6:1130–1133

    Google Scholar 

  • Dobrev P, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Economou G, Lyra D, Sotirakoglou K, Fasseas K, Taradilis P (2007) Stimulating Orobanche ramosa seed germination with an Ascophyllum nodosum extract. Phytoparasitica 35:367–375

    Article  Google Scholar 

  • FAO (2006) Year Book of Fisheries Statistics. Food and Agricultural Organisation of the United Nations, Rome, 98(1 & 2)

  • Featonby-Smith BC, van Staden J (1987) Effects of seaweed concentrate on grain yield in barely. S Afr J Bot 53:125–128

    Google Scholar 

  • Filion-Myklebust C, Norton TA (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.) Le Jolis and its ecological significance. Mar Biol Lett 2:45–51

    Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Ann Rev Plant Physiol Plant Mol Biol 40:305–346

    Article  CAS  Google Scholar 

  • Finnie JF, Van Staden J (1985) Effect of seaweed concentrate and applied hormones on in-vitro cultured tomato roots. J Plant Physiol 120:215–222

    CAS  Google Scholar 

  • Gandhiyappan K, Perumal P (2001) Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant. Seaweed Res Util 23:23–25

    Google Scholar 

  • Ho T-HD, Shih SC, Shute DE (1980) Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol 66:153–157

    PubMed  CAS  Google Scholar 

  • Jacobsen JV, Gubler F, Chandler PM (1995) Gibberellin action in germinated cereal grains. In: Davies P (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, The Netherlands, pp 246–271

    Google Scholar 

  • Jameson PE (1993) Plant hormones in the algae. Prog Phycol Res 9:239–279

    CAS  Google Scholar 

  • Jones RL, Jacobsen JV (1991) Regulation of synthesis and transport of secreted proteins in cereal aleurone. Int Rev Cytol 126:49–88

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi M, Watanabe K (2005) Effect of kelp on rice seedling growth. Tohoku J Crop Sci 48:27–29

    Google Scholar 

  • Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotype of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    Article  CAS  Google Scholar 

  • Kende H, Zeevaart J (1997) The five “classical” plant hormones. Plant Cell 9:1197–1210

    Article  PubMed  CAS  Google Scholar 

  • Keser M, Vadas RL, Larson BR (1981) Regrowth of Ascophyllum nodosum and Fucus vesiculosus under various harvesting regimes in Maine, USA. Bot Mar 24:29–38

    Article  Google Scholar 

  • Koornneef M, Karssen CM (1994) Seed dormancy and germination in Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 313–334

    Google Scholar 

  • Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110

    Article  PubMed  CAS  Google Scholar 

  • Mander LN (1992) The chemistry of gibberellins: an overview. Chem Rev 92:573–612

    Article  CAS  Google Scholar 

  • Mrva K, Wallwork M, Mares DJ (2006) α-Amylase and programmed cell death in aleurone of ripening wheat grains. J Exp Bot 57:877–885

    Article  PubMed  CAS  Google Scholar 

  • Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T, Fujisawa Y (2004) Post transcriptional regulation of α-amylase II-4 expression by gibberellin in germinating rice seeds. Plant Physiol Biochem 42:477–484

    Article  PubMed  CAS  Google Scholar 

  • Norrie J, Keathley JP (2006) Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Acta Hortic 727:243–245

    CAS  Google Scholar 

  • Ogiyama K, Pharis RP (1980) Endogenous plant growth regulating substances in the foliage of Cryptomeria japonica D. Don. Mokuzai gakkai shi 26:823–827

    CAS  Google Scholar 

  • Olsen OA, Lemmon BE, Brown RC (1998) A model for aleurone cell development. Trends Plant Sci 3:168–169

    Article  Google Scholar 

  • Rao KR (1991) Effect of seaweed extract on Zizyphus mauratiana Lamk. J Indian Bot Soc 71:19–21

    Google Scholar 

  • Rayorath P, Narayanan JM, Farid A, Khan W, Palanisamy R, Hankins S, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  CAS  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  PubMed  CAS  Google Scholar 

  • Rood SB, Pharis RP, Koshioka M (1983) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73:340–346

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TM, Lindquist N, Hay ME (1998) Seaweed secondary metabolites as antifoulants: effects of Dictyota spp. diterpenes on survivorship, settlement, and development of invertebrate larvae. Chemoecology 8:125–131

    Article  CAS  Google Scholar 

  • Senn TL (1987) Seaweed and plant growth. Faith Printing Company, Taylors, SC, 192 pp

  • Senn TL, Kingman AR (1978) Seaweed research in crop production 1958–1978, Project No. 99–6-09329–2. Economic Development Administration. U.S. Department of Commerce, Washington, DC

    Google Scholar 

  • Stephenson WA (1974) Seaweed in agriculture and horticulture. In: Rateaver B, Rateaver G (eds) Conservation gardening and farming. Rateavers Press, Pauma Valley, CA

    Google Scholar 

  • Steveni CM, Norrington-Davies J, Hankins SD (1992) Effect of seaweed concentrate on hydroponically grown spring barley. J Appl Phycol 4:173–180

    Article  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Ann Rev Plant Physiol Plant Mol Biol 55:197–223

    CAS  Google Scholar 

  • Taylor WR (1957) Marine algae of the Northeast Coast of North America. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Ugarte RA, Sharp G, Moore B (2006) Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. Plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. J Appl Phycol 18:351–359

    Article  Google Scholar 

  • Verkleij FN (1992) Seaweed extracts in agriculture and horticulture: a review. Biol Agric Hort 8:309–324

    Google Scholar 

  • Wrightman F, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots I: source of primordia-inducing substances in the primary root of pea seedlings. Physiol Plant 49:13–20

    Article  Google Scholar 

  • Zentella R, Yamauchi D, Ho T-HD (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ervin EH (2004) Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1–10

    Google Scholar 

  • Zhang X, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci 48:364–370

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Atlantic Canada Opportunities Agency and Acadian Seaplants Limited. The authors are grateful to Dr. P. Chandler, CISRO, Canberra, Australia, for barley parent line cv. Himayala and grd2 mutant M463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakrishan Prithiviraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayorath, P., Khan, W., Palanisamy, R. et al. Extracts of the Brown Seaweed Ascophyllum nodosum Induce Gibberellic Acid (GA3)-independent Amylase Activity in Barley. J Plant Growth Regul 27, 370–379 (2008). https://doi.org/10.1007/s00344-008-9063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-008-9063-6

Keywords

Navigation