Skip to main content
Log in

The Inflorescence Stem Fibers of Arabidopsis thaliana Revoluta (ifl1) Mutant

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana is gradually gaining significance as a model for wood and fiber formation. revolute/ifl1 is an important mutant in this respect. To better characterize the fiber system of the revolute/ifl1 mutant, we grew plants of two alleles (rev-9 in Israel and rev-1 in the USA) and examined the fiber system of the inflorescence stems using both brightfield and polarized light. Microscopic examination of sections of plants belonging to the two different alleles clearly revealed that, contrary to previous views, in 18 (13 in Israel and 5 in Ohio) out of 30 stems (20 in Israel and 10 in Ohio) the mutant produced the primary wavy fiber system of the inflorescence stems. Our findings are further supported by the fact that fibers are seen in the figures published in other studies of the mutant even when it was stated that there were no fibers. The impression of a total lack of the wavy band of fibers is in many cases just a result of poorly lignified secondary walls. This specific gene that reduces lignification in fibers is of great significance for biotechnological developments for the paper industry and thus for the global economy and ecology. We propose that revoluta, the first name given to this mutant (Talbert and others 1995), is more appropriate than ifl1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • MM Altamura M Possenti A Matteucci S Baima I Ruberti G Morelli (2001) ArticleTitleDevelopment of the vascular system in the inflorescence stem of Arabidopsis New Phytol 151 381–389 Occurrence Handle10.1046/j.0028-646x.2001.00188.x

    Article  Google Scholar 

  • Beers, EP, Zhao, C (2001) “Arabidopsis as a model for investigating gene activity and function in vascular tissues” In: Morohoshi, N., Komamine, A. (editors), Molecular breeding of woody plants, Elsevier Science B.V., Amsterdam, pp 43-52

  • DH Burk B Liu R Zhong WH Morrison Z-H Ye (2001) ArticleTitleA Katanin-like protein regulates normal cell wall biosynthesis and cell elongation Plant Cell 13 807–827 Occurrence Handle10.1105/tpc.13.4.807 Occurrence Handle1:CAS:528:DC%2BD3MXjtFWqu7k%3D Occurrence Handle11283338

    Article  CAS  PubMed  Google Scholar 

  • N Chaffey (2002) ArticleTitleWhy is there so little research into the cell biology of the secondary vascular system of trees? New Phytol 153 213–223 Occurrence Handle10.1046/j.0028-646X.2001.00311.x

    Article  Google Scholar 

  • N Chaffey E Cholewa S Regan B Sundberg (2002) ArticleTitleSecondary xylem development in Arabidopsis: a model for wood formation Physiol Plant 114 594–600 Occurrence Handle10.1034/j.1399-3054.2002.1140413.x Occurrence Handle1:CAS:528:DC%2BD38XjvFCnt7k%3D Occurrence Handle11975734

    Article  CAS  PubMed  Google Scholar 

  • J Cronshaw PR Morey (1965) ArticleTitleInduction of tension wood by 2,3,5-Tri-iodobenzoic acid Nature 205 816–818 Occurrence Handle1:CAS:528:DyaF2MXmt1eguw%3D%3D

    CAS  Google Scholar 

  • L Dolan K Janmaat V Willemsen et al. (1993) ArticleTitleCellular organisation of the Arabidopsis thaliana root Development 119 71–84 Occurrence Handle1:STN:280:ByuC3c3gsFQ%3D Occurrence Handle8275865

    CAS  PubMed  Google Scholar 

  • L Dolan K Roberts (1995) ArticleTitleSecondary thickening in roots of Arabidopsis thaliana: anatomy and cell surface changes New Phytol 131 121–128

    Google Scholar 

  • JF Emery SK Floyd J Alvarez et al. (2003) ArticleTitleRadial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes Curr Sci 13 1768–1774 Occurrence Handle1:CAS:528:DC%2BD3sXot12itbg%3D

    CAS  Google Scholar 

  • MA Flaishman K Loginovsky S Lev-Yadun (2003) ArticleTitleRegenerative xylem in inflorescence stems of Arabidopsis thaliana J Plant Gr Regul 22 253–258 Occurrence Handle10.1007/s00344-003-0030-y Occurrence Handle1:CAS:528:DC%2BD2cXls1Cltg%3D%3D

    Article  CAS  Google Scholar 

  • SK Floyd JL Bowman (2004) ArticleTitleAncient microRNA target sequences in plants Nature 428 485–486 Occurrence Handle10.1038/428485a Occurrence Handle1:CAS:528:DC%2BD2cXis1Gksr0%3D Occurrence Handle15057819

    Article  CAS  PubMed  Google Scholar 

  • V Funk B Kositsup C Zhao EP Beers (2002) ArticleTitleThe Arabidopsis xylempeptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog Plant Physiol 128 84–94 Occurrence Handle10.1104/pp.128.1.84 Occurrence Handle1:CAS:528:DC%2BD38XmvVSktQ%3D%3D Occurrence Handle11788755

    Article  CAS  PubMed  Google Scholar 

  • T Greb O Clarenz E Schäfer et al. (2003) ArticleTitleMolecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation Genes Dev 17 1175–1187 Occurrence Handle10.1101/gad.260703 Occurrence Handle1:CAS:528:DC%2BD3sXjslGkt7s%3D Occurrence Handle12730136

    Article  CAS  PubMed  Google Scholar 

  • M Kirst AF Johnson C Baucom et al. (2003) ArticleTitleApparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana PNAS 100 7383–7388 Occurrence Handle10.1073/pnas.1132171100 Occurrence Handle12771380

    Article  PubMed  Google Scholar 

  • J-H Ko K-H Han S Park J Yang (2004) ArticleTitlePlant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling Plant Physiol 135 1069–1083 Occurrence Handle10.1104/pp.104.038844 Occurrence Handle1:CAS:528:DC%2BD2cXltlKis7s%3D Occurrence Handle15194820

    Article  CAS  PubMed  Google Scholar 

  • S Lev-Yadun (1994) ArticleTitleInduction of sclereid differentiation in the pith of Arabidopsis thaliana (L.) Heynh J Exp Bot 45 1845–1849 Occurrence Handle1:CAS:528:DyaK2MXjsFeqsrY%3D

    CAS  Google Scholar 

  • S Lev-Yadun (1997) ArticleTitleFibres and fibre-sclereids in wild-type Arabidopsis thaliana Ann Bot 80 125–129 Occurrence Handle10.1006/anbo.1997.0419

    Article  Google Scholar 

  • S Lev-Yadun MA Flaishman (2001) ArticleTitleThe effect of submergence on ontogeny of cambium and secondary xylem and on fiber lignification in inflorescence stems of Arabidopsis IAWA J 22 159–169

    Google Scholar 

  • O Leyser S Day (2003) Mechanisms in plant development Blackwell Publishing Company Oxford

    Google Scholar 

  • CHA Little JE MacDonald O Olsson (2002) ArticleTitleInvolvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation in Arabidopsis ihaliana inflorescence stems Int J Plant Sci 163 519–529 Occurrence Handle10.1086/339642 Occurrence Handle1:CAS:528:DC%2BD38XlslCmtrg%3D

    Article  CAS  Google Scholar 

  • RF Lyndon (1990) Plant development: the cellular basis Unwin Hyman London

    Google Scholar 

  • J Mattsson W Ckurshumova T Berleth (2003) ArticleTitleAuxin signalling in Arabidopsis leaf vascular development Plant Physiol 131 1327–1339 Occurrence Handle10.1104/pp.013623 Occurrence Handle1:CAS:528:DC%2BD3sXisFels7o%3D Occurrence Handle12644682

    Article  CAS  PubMed  Google Scholar 

  • JR McConnell J Emery Y Eshed N Bao J Bowman MK Barton (2001) ArticleTitleRole of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots Nature 411 709–713 Occurrence Handle10.1038/35079635 Occurrence Handle1:CAS:528:DC%2BD3MXksF2ns7w%3D Occurrence Handle11395776

    Article  CAS  PubMed  Google Scholar 

  • EM Meyerowitz (1997) ArticleTitleGenetic control of cell division patterns in developing plants Cell 88 299–308 Occurrence Handle10.1016/S0092-8674(00)81868-1 Occurrence Handle1:CAS:528:DyaK2sXhtFahtrg%3D Occurrence Handle9039256

    Article  CAS  PubMed  Google Scholar 

  • KM Nieminen L Kauppinen Y Helariutta (2004) ArticleTitleA weed for wood? Arabidopsis as a genetic model for xylem development Plant Physiol 135 653–659 Occurrence Handle10.1104/pp.104.040212 Occurrence Handle1:CAS:528:DC%2BD2cXltlKjtbs%3D Occurrence Handle15208411

    Article  CAS  PubMed  Google Scholar 

  • S Oh S Park K-H Han (2003) ArticleTitleTranscriptional regulation of secondary growth in Arabidopsis thaliana J Exp Bot 54 2709–2722 Occurrence Handle10.1093/jxb/erg304 Occurrence Handle1:CAS:528:DC%2BD3sXpvVemtbY%3D Occurrence Handle14585825

    Article  CAS  PubMed  Google Scholar 

  • D Otsuga B DeGuzman MJ Prigge GN Drews SE Clark (2001) ArticleTitleREVOLUTA regulates meristem mitiation at lateral positions Plant J 25 223–236 Occurrence Handle10.1046/j.1365-313x.2001.00959.x Occurrence Handle1:CAS:528:DC%2BD3MXhtlals74%3D Occurrence Handle11169198

    Article  CAS  PubMed  Google Scholar 

  • OJ Ratcliffe JL Riechmann JZ Zhang (2000) ArticleTitleINTERFASCICULAR FIBERLESS1 is the same gene as REVOLUTA Plant Cell 12 315–317 Occurrence Handle10.1105/tpc.12.3.315 Occurrence Handle1:CAS:528:DC%2BD3cXktFWjurg%3D Occurrence Handle10715319

    Article  CAS  PubMed  Google Scholar 

  • L Taiz E Zeiger (2002) Plant physiology EditionNumber3 Sinauer Associates Inc. Publishers Sunderland

    Google Scholar 

  • PB Talbert HT Adler DW Parks L Comai (1995) ArticleTitleThe REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana Development 121 2723–2735 Occurrence Handle1:CAS:528:DyaK2MXotF2mt7o%3D Occurrence Handle7555701

    CAS  PubMed  Google Scholar 

  • TE Timell (1986) Compression wood in gymnosperms Springer-Verlag Berlin

    Google Scholar 

  • Z-H Ye (2002) ArticleTitleVascular tissue differentiation and pattern formation in plants Annu Rev Plant Biol 53 183–202 Occurrence Handle10.1146/annurev.arplant.53.100301.135245 Occurrence Handle1:CAS:528:DC%2BD38XlsVWhtbg%3D Occurrence Handle12221972

    Article  CAS  PubMed  Google Scholar 

  • Z-H Ye G Freshour MG Hahn DH Burk R Zhong (2002) ArticleTitleVascular development in Arabidopsis Crit Rev Cyol 220 225–256 Occurrence Handle1:CAS:528:DC%2BD38XotFOgt7w%3D

    CAS  Google Scholar 

  • C Zhao BJ Johnson B Kositsup EP Beers (2000) ArticleTitleExploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases Plant Physiol 123 1185–1196 Occurrence Handle10.1104/pp.123.3.1185 Occurrence Handle1:CAS:528:DC%2BD3cXlt1SltL0%3D Occurrence Handle10889267

    Article  CAS  PubMed  Google Scholar 

  • R Zhong Z-H Ye (1999) ArticleTitleIFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein Plant Cell 11 2139–2152 Occurrence Handle10.1105/tpc.11.11.2139 Occurrence Handle1:CAS:528:DyaK1MXnsl2rsLo%3D Occurrence Handle10559440

    Article  CAS  PubMed  Google Scholar 

  • R Zhong Z-H Ye (2001) ArticleTitleAlteration of auxin polar transport in the Arabidopsis ifl1 mutants Plant Physiol 126 549–563 Occurrence Handle10.1104/pp.126.2.549 Occurrence Handle1:CAS:528:DC%2BD3MXks1Gnu7k%3D Occurrence Handle11402186

    Article  CAS  PubMed  Google Scholar 

  • R Zhong Z-H Ye (2004) ArticleTitleAmphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels Plant Cell Physiol 45 369–385 Occurrence Handle10.1093/pcp/pch051 Occurrence Handle1:CAS:528:DC%2BD2cXjsFKhtLw%3D Occurrence Handle15111711

    Article  CAS  PubMed  Google Scholar 

  • R Zhong JJ Taylor Z-H Ye (1997) ArticleTitleDisruption of interfascicular fiber differentiation in an Arabidopsis mutant Plant Cell 9 2159–2170 Occurrence Handle10.1105/tpc.9.12.2159 Occurrence Handle1:CAS:528:DyaK1cXjt12luw%3D%3D Occurrence Handle9437861

    Article  CAS  PubMed  Google Scholar 

  • R Zhong DH Burk Z-H Ye (2001) ArticleTitleFibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis Plant Physiol 126 477–479 Occurrence Handle10.1104/pp.126.2.477 Occurrence Handle1:CAS:528:DC%2BD3MXks1GnurY%3D Occurrence Handle11402177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Arabidopsis Biological Resource Center (Ohio State University) for the seeds of the mutant and Kamelia Loginovsky for her technical assistance. We also thank two anonymous reviewers for their important comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simcha Lev-Yadun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev-Yadun, S., Wyatt, S.E. & Flaishman, M.A. The Inflorescence Stem Fibers of Arabidopsis thaliana Revoluta (ifl1) Mutant. J Plant Growth Regul 23, 301–306 (2004). https://doi.org/10.1007/s00344-004-0024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-004-0024-4

Keywords

Navigation