Skip to main content

Advertisement

Log in

The potential distribution of adult Antarctic krill in the Amundsen Sea

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Antarctic krill is the key species of ecological system in the Amundsen Sea. At present, the suitable distribution is unobtainable by scientific surveys or data from the fishery. In this paper, the maximum entropy algorithm (Maxent) was used to obtain the potential distribution of adult Antarctic krill in order to provide useful information and reasonable reference for the policy on protecting potential krill habitats around the Amundsen Sea. Occurrence points and 17 environmental variables were used to simulate the distributions. Results show that the high and moderate suitable habitats lie between 65°S and 72°S in the Amundsen Sea. The high suitable habitat accounts for 8.1% of the total area of the Amundsen Sea. The sea ice persistence (ICE), total phytoplankton (PHYC), and the minimum value of dissolved iron (Fe_min) are the three dominant contributors to the model. Results from the response curves show that Antarctic krill preferred habitats with ICE of 0.42–0.93, PHYC of 2.48–2.77 mmol/m3 and Fe_min of (7.10×10−5)−(9.45×10−5) mmol/m3. Positive trends existed in the PHYC of the high and moderate suitable habitat, and a positive trend existed in the Fe_min of moderate suitable habitat. However, the probability of presence of Antarctic krill will decrease if the increase of the PHYC and Fe_min continues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The presence data of the Antarctic krill can be obtained from KRILLBASE (https://www.bas.ac.uk/project/krillbase/). Environmental variables are derived from the GLORYS2v4 (http://marine.copernicus.eu/service-portfolio/).

References

  • Alderkamp A C, Van Dijken G L, Lowry K E, Connelly T L, Lagerström M, Sherrell R M, Haskins C, Rogalsky E, Schofield O, Stammerjohn S E, Yager P L, Arrigo K R. 2015. Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica. Elementa: Science of the Anthropocene, 3: 000043.

    Google Scholar 

  • Arrigo K R, Lowry K E, Van Dijken G L. 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography, 71–76: 5–15.

    Article  Google Scholar 

  • Arrigo K R, Van Dijken G L. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research: Oceans, 108(C8): 3271, https://doi.org/10.1029/2002JC001739.

    Article  Google Scholar 

  • Assmann K M, Hellmer H H, Jacobs S S. 2005. Amundsen Sea ice production and transport. Journal of Geophysical Research: Oceans, 110(C12): C12013, https://doi.org/10.1029/2004JC002797.

    Article  Google Scholar 

  • Atkinson A, Hill S L, Pakhomov E A, Seigel V, Anadon R, Chiba S, Daly K L, Downie R, Fielding S, Fretwell P, Gerrish L, Hosie G W, Jessopp M J, Kawaguchi S, Krafft B A, Loeb V, Nishikawa J, Peat H J, Reiss C S, Ross R M, Langdon B Quetin, Schmidt K, Steinberg D K, Subramaniam R C, Tarling G A, Ward P. 2017. KRILLBASE: A database of Antarctic krill and salp densities in the Southern Ocean, 1926 to 2016. Earth System Science Data, 9: 193–210, https://doi.org/10.5194/essd-9-193-2017.

    Article  Google Scholar 

  • Atkinson A, Nicol S, Kawaguchi S, Pakhomov E A, Quetin L B, Ross R M, Hill S L, Reiss C, Siegel V, Tarling G. 2012. Fitting Euphausia superba into Southern Ocean food-web models: a review of data sources and their limitations. CCAMLR Science, 19: 219–245.

    Google Scholar 

  • Atkinson A, Shreeve R S, Hirst A G, Rothery P, Tarling G A, Pond D W, Korb R E, Murphy E J, Watkins J L. 2006. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnology and Oceanography, 51(2): 973–987.

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E A, Rothery P, Loeb V, Ross R M, Quetin L B, Schmidt K, Fretwell P, Murphy E J, Tarling G A, Fleming A H. 2008. Oceanic circumpolar habitats of Antarctic krill. Marine Ecology Progress Series, 362: 1–23.

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013): 100–103.

    Article  Google Scholar 

  • Ballerini T, Hofmann E E, Ainley D G, Daly K, Marrari M, Ribic C A, Smith W O Jr, Steele J H. 2014. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf. Progress in Oceanography, 122: 10–29.

    Article  Google Scholar 

  • Berglund A. 1985. Different reproductive success at low salinity determines the estuarine distribution of two Palaemon prawn species. Ecography, 8(1): 49–52.

    Article  Google Scholar 

  • Boitani L, Corsi F, Falcucci A, Maiorano L, Marzetti M, Masi M, Montemaggiori A, Ottaviani D, Reggiani G, Rondinini C. 2002. Rete Ecologica Nazionale. Un approccio alla conservazione dei Vertebrati Italiani. Relazione Finale [National Ecological Network. An Approach to Conservation of Italian Vertebrates. Final Report]. Università di Roma “La Sapienza”, Dipartimento di Biologia Animale e dell’Uomo, Ministero dell’Ambiente, Direzione per la Conservazione della Natura, Istituto di Ecologia Applicata, Roma.

    Google Scholar 

  • Bombosch A, Zitterbart D P, Van Opzeeland I, Frickenhaus S, Burkhardt E, Wisz M S, Boebel O. 2014. Predictive habitat modelling of humpback (Megapteranovaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Research Part I: Oceanographic Research Papers, 91: 101–114.

    Article  Google Scholar 

  • Boyd P W, Jickells T, Law C S, Blain S, Boyle E A, Buesseler K O, Coale K H, Cullen J J, Baar H J W D, Follows M, Harvey M, Lancelot C, Levasseur M, Owens N P J, Pollard R, Rivkin R B, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson A J. 2007. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science, 315(5812): 612–617.

    Article  Google Scholar 

  • Brooks C M, Crowder L B, Österblom H, Strong A L. 2020. Reaching consensus for conserving the global commons: The case of the Ross Sea, Antarctica. Conservation Letters, 13(1): e12676.

    Article  Google Scholar 

  • Burrows M T, Schoeman D S, Buckley L B, Moore P, Poloczanska E S, Brander K M, Brown C, Bruno J F, Duarte C M, Halpern B S, Holding J, Kappel C V, Kiessling W, O’connor M I, Pandolfi J M, Parmesan C, Schwing F B, Sydeman W J, Richardson A J. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science, 334(6056): 652–655.

    Article  Google Scholar 

  • Cao B, Bai C K, Zhang L L, Li G S, Mao M C. 2016. Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. Journal of Plant Ecology, 9(6): 742–751.

    Article  Google Scholar 

  • Constable A J, De La Mare W K, Agnew D J, Everson I, Miller D. 2000. Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES Journal of Marine Science, 57(3): 778–791.

    Article  Google Scholar 

  • Cox M J, Candy S G, De La Mare W K, Nicol S, Kawaguchi S, Gales N. 2018. No evidence for a decline in the density of Antarctic krill Euphausia superba Dana, 1850, in the Southwest Atlantic sector between 1976 and 2016. Journal of Crustacean Biology, 38(6): 656–661.

    Google Scholar 

  • Croxall J P, Prince P A. 1980. Food, feeding ecology and ecological segregation of seabirds at South Georgia. Biological Journal of the Linnean Society, 14(1): 103–131, https://doi.org/10.1111/j.1095-8312.1980.tb00101.X.

    Article  Google Scholar 

  • Croxall J P, Reid K, Prince P A. 1999. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Marine Ecology Progress Series, 177: 115–131.

    Article  Google Scholar 

  • Dahood A, De Mutsert K, Watters G M. 2020. Evaluating Antarctic marine protected area scenarios using a dynamic food web model. Biological Conservation, 251: 108766.

    Article  Google Scholar 

  • De Baar H J W, Boyd P W, Coale K H, Landry M R, Tsuda A, Assmy P, Bakker D C E, Bozec Y, Barber R T, Brzezinski MA, Buesseler K O, Boyé M, Croot P L, Gervais F, Gorbunov M Y, Harrison P J, Hiscock W T, Laan P, Lancelot C, Law C S, Levasseur M, Marchetti A, Millero F J, Nishioka J, Nojiri Y, Van Oijen T, Riebesell U, Rijkenberg M J A, Saito H, Takeda S, Timmermans K R, Veldhuis M J W, Waite A M, Wong C S. 2005. Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment. Journal of Geophysical Research: Oceans, 110(C9): C09S16.

    Article  Google Scholar 

  • Deppeler S L, Davidson A T. 2017. Southern Ocean phytoplankton in a changing climate. Frontiers in Marine Science, 4: 40.

    Article  Google Scholar 

  • Do Amaral K B, Alvares D J, Heinzelmann L, Borges-Martins M, Siciliano S, Moreno I B. 2015. Ecological niche modeling of Stenella dolphins (Cetartiodactyla: Delphinidae) in the southwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology, 472: 166–179.

    Article  Google Scholar 

  • Elith J, Phillips S J, Hastie T, Dudík M, Chee Y E, Yates C J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1): 43–57.

    Article  Google Scholar 

  • Fielding A H, Bell J F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1): 38–49.

    Article  Google Scholar 

  • Flores H, Atkinson A, Kawaguchi S, Krafft B A, Milinevsky G, Nicol S, Reiss C, Tarling G A, Werner R, Rebolledo E B, Cirelli V, Cuzin-Roudy J, Fielding S, Groeneveld J J, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov E A, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec J Y, Trathan P N, Tremblay N, Van De Putte A P, Van Franeker J A, Werner T. 2012a. Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458: 1–19.

    Article  Google Scholar 

  • Flores H, Van Franeker J A, Siegel V, Haraldsson M, Strass V, Meesters E H, Bathmann U, Jan Wolff W. 2012b. The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS One, 7(2): e31775, https://doi.org/10.1371/journal.pone.0031775.

    Article  Google Scholar 

  • Forcada J, Trathan P N, Boveng P L, Boyd I L, Burns J M, Costa D P, Fedak M, Rogers T L, Southwell C J. 2012. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biological Conservation, 149(1): 40–50, https://doi.org/10.1016/j.biocon.2012.02.002.

    Article  Google Scholar 

  • Grant S M, Hill S L, Trathan P N, Murphy E J. 2013. Ecosystem services of the Southern Ocean: trade-offs in decisionmaking. Antarctic Science, 25(5): 603–617.

    Article  Google Scholar 

  • Hill S L, Phillips T, Atkinson A. 2013. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS One, 8(8): e72246.

    Article  Google Scholar 

  • Hirzel A H, Le Lay G, Helfer V, Randin C, Guisan A. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2): 142–152.

    Article  Google Scholar 

  • Hofmann E E, Hüsrevoǧlu Y S. 2003. A circumpolar modeling study of habitat control of Antarctic krill (Euphausia superba) reproductive success. Deep Sea Research Part II: Topical Studies in Oceanography, 50(22–26): 3121–3142.

    Article  Google Scholar 

  • Holland P R, Jenkins A, Holland D M. 2010. Ice and ocean processes in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research: Oceans, 115(C5): C05020, https://doi.org/10.1029/2008JC005219.

    Article  Google Scholar 

  • Jacquet J, Pauly D, Ainley D, Holt S, Dayton P, Jackson J. 2010. Seafood stewardship in crisis. Nature, 467(7311): 28–29.

    Article  Google Scholar 

  • Jiang F. 2018. Bioclimatic and altitudinal variables influence the potential distribution of canine parvovirus type 2 worldwide. Ecology and Evolution, 8(9): 4534–4543, https://doi.org/10.1002/ece3.3994.

    Article  Google Scholar 

  • Kinzey D, Watters G M, Reiss C S. 2015. Selectivity and two biomass measures in an age-based assessment of Antarctic krill (Euphausia superba). Fisheries Research, 168: 72–84.

    Article  Google Scholar 

  • Krafft B A, Melle W, Knutsen T, Bagøien E, Broms C, Ellertsen B, Siegel V. 2010. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biology, 33(7): 957–968.

    Article  Google Scholar 

  • La H S, Lee H, Fielding S, Kang D, Ha H K, Atkinson A, Park J, Siegel V, Lee S, Shin H C. 2015. High density of ice krill (Euphausia crystallorophias) in the Amundsen Sea coastal polynya, Antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 95: 75–84.

    Article  Google Scholar 

  • Loeb V J, Santora J A. 2015. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Progress in Oceanography, 134: 93–122.

    Article  Google Scholar 

  • Mann H B. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3): 245–259.

    Article  Google Scholar 

  • Melo-Merino S M, Reyes-Bonilla H, Lira-Noriega A. 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415: 108837.

    Article  Google Scholar 

  • Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A, Kofinas G, Mackintosh A, MelbourneThomas J, Muelbert MMC, Ottersen G, Pritchard H, Schuur EAG. 2019. Polar regions. In: Pörtner H-O, Roberts D C, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM eds. IPCC special report on the ocean and cryosphere in a changing climate.

  • Merow C, Smith M J, Silander J A Jr. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10): 1058–1069.

    Article  Google Scholar 

  • Meyer B, Atkinson A, Bernard K S, Brierley A S, Driscoll R, Hill S L, Marschoff E, Maschette D, Perry F A, Reiss C S, Rombolá E, Tarling G A, Thorpe S E, Trathan P N, Zhu G P, Kawaguchi S. 2020. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation. Communications Earth & Environment, 1: 28.

    Article  Google Scholar 

  • Milchev B. 2009. Breeding biology of the Long-legged Buzzard Buteo rufinus in SE Bulgaria, nesting also in quarries. Avocetta, 33: 25–32.

    Google Scholar 

  • Moore C M, Mills M M, Arrigo K R, Berman-Frank I, Bopp L, Boyd P W, Galbraith E D, Geider R J, Guieu C, Jaccard S L, Jickells T D, La Roche J, Lenton T M, Mahowald N M, Marañón E, Marinov I, Moore J K, Nakatsuka T, Oschlies A, Saito M A, Thingstad T F, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9): 701–710.

    Article  Google Scholar 

  • Nachtsheim D A, Jerosch K, Hagen W, Plötz J, Bornemann H. 2017. Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent. Polar Biology, 40(5): 961–976.

    Article  Google Scholar 

  • Newton I. 2003. The role of natural factors in the limitation of bird of prey numbers: A brief review of the evidence. In: Redpath T D B A, Fielding S M, Marquiss A H, Galbraith C A eds. Birds of Prey in a Changing Environment. Scottish Natural Heritage/The Stationary Office, Edinburgh, Scotland. p.5–23.

    Google Scholar 

  • Nicol S. 2000. Understanding krill growth and aging: the contribution of experimental studies. Canadian Journal of Fisheries and Aquatic Sciences, 57(S3): 168–177.

    Article  Google Scholar 

  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42.

    Article  Google Scholar 

  • Peterson A T, Ball L G, Cohoon K P. 2002. Predicting distributions of Mexican birds using ecological niche modelling methods. Ibis, 144(1): E27–E32, https://doi.org/10.1046/j.0019-1019.2001.00031.x.

    Article  Google Scholar 

  • Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4): 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.

    Article  Google Scholar 

  • Phillips S J, Dudík M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2): 161–175, https://doi.org/10.1111/j.0906-7590.2008.5203.x.

    Article  Google Scholar 

  • Piñones A, Fedorov A V. 2016. Projected changes of Antarctic krill habitat by the end of the 21st century. Geophysical Research Letters, 43(16): 8580–8589, https://doi.org/10.1002/2016GL069656.

    Article  Google Scholar 

  • Pueyo S, He F L, Zillio T. 2007. The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecology Letters, 10(11): 1017–1028.

    Article  Google Scholar 

  • Rashid M M, Beecham S, Chowdhury R K. 2015. Assessment of trends in point rainfall using continuous Wavelet Transforms. Advances in Water Resource, 82: 1–15.

    Article  Google Scholar 

  • Reid K, Croxall J P, Briggs D R, Murphy E J. 2005. Antarctic ecosystem monitoring: Quantifying the response of ecosystem indicators to variability in Antarctic krill. ICES Journal of Marine Science, 62(3): 366–373, https://doi.org/10.1016/j.icesjms.2004.11.003.

    Article  Google Scholar 

  • Reiss C S, Cossio A M, Loeb V, Demer D A. 2008. Variations in the biomass of Antarctic krill (Euphausia superba) around the South Shetland Islands, 1996–2006. ICES Journal of Marine Science, 65(4): 497–508.

    Article  Google Scholar 

  • Robinson L M, Elith J, Hobday A J, Pearson R G, Kendall B E, Possingham H P, Richardson A J. 2011. Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 20(6): 789–802.

    Article  Google Scholar 

  • Saatchi S, Buermann W, Ter Steege H, Mori S, Smith T B. 2008. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112(5): 2000–2017, https://doi.org/10.1016/j.rse.2008.01.008.

    Article  Google Scholar 

  • Saupe E E, Qiao H J, Hendricks J R, Portell R W, Hunter S J, Soberón J, Lieberman B S. 2015. Niche breadth and geographic range size as determinants of species survival on geological time scales. Global Ecology and Biogeography, 24(10): 1159–1169.

    Article  Google Scholar 

  • Schiermeier Q. 2010. Ecologists fear Antarctic krill crisis. Nature, 467(7311): 15.

    Article  Google Scholar 

  • Siegel V, Piatkowski U. 1990. Variability in the macrozooplankton community off the Antarctic Peninsula. Polar Biology, 10(5): 373–386.

    Article  Google Scholar 

  • Siegel V, Watkins J L. 2016. Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V ed. Biology and Ecology of Antarctic Krill. Cham: Springer, https://doi.org/10.1007/978-3-319-29279-3_2.

    Chapter  Google Scholar 

  • Siegel V. 2005. Distribution and population dynamics of Euphausia superba: summary of recent findings. Polar Biology, 29(1): 1–22.

    Article  Google Scholar 

  • Silk J R D, Thorpe S E, Fielding S, Murphy E J, Trathan P N, Watkins J L, Hill S L. 2016. Environmental correlates of Antarctic krill distribution in the Scotia Sea and southern Drake Passage. ICES Journal of Marine Science, 73(9): 2288–2301.

    Article  Google Scholar 

  • Sylvester Z T, Long M C, Brooks C M. 2021. Detecting climate signals in Southern Ocean krill growth habitat. Frontiers in Marine Science, 8: 708.

    Article  Google Scholar 

  • Taki K, Hayashi T, Naganobu M. 2005. Characteristics of seasonal variation in diurnal vertical migration and aggregation of Antarctic krill (Euphausia superba) in the Scotia Sea, using Japanese fishery data. CCAMLR Science, 12: 163–172.

    Google Scholar 

  • Tarling G A, Klevjer T, Fielding S, Watkins J, Atkinson A, Murphy E, Korb R, Whitehouse M, Leaper R. 2009. Variability and predictability of Antarctic krill swarm structure. Deep Sea Research Part I: Oceanographic Research Papers, 56(11): 1994–2012.

    Article  Google Scholar 

  • Teschke K, Pehlke H, Siegel V, Bornemann H, Knust R, Brey T. 2020. An integrated compilation of data sources for the development of a marine protected area in the Weddell Sea. Earth System Science Data, 12(2): 1003–1023.

    Article  Google Scholar 

  • Thuiller W, Richardson D M, Pyšek P, Midgley G F, Hughes G O, Rought M. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12): 2234–2250.

    Article  Google Scholar 

  • Vaughan D G, Marshall G J, Connolley W M, Parkinson C, Mulvaney R, Hodgson D A, King J C, Pudsey C J, Turner J. 2003. Recent Rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60(3): 243–274.

    Article  Google Scholar 

  • Veytia D, Corney S, Meiners K M, Kawaguchi S, Murphy E J, Bestley S. 2020. Circumpolar projections of Antarctic krill growth potential. Nature Climate Change, 10(6): 568–575, https://doi.org/10.1038/s41558-020-0758-4.

    Article  Google Scholar 

  • Wang S, Bailey D, Lindsay K, Moore J K, Holland M. 2014. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences, 11(17): 4713–4731.

    Article  Google Scholar 

  • Watters G M, Hinke J T, Reiss C S. 2020. Long-term observations from Antarctica demonstrate that mismatched scales of fisheries management and predator-prey interaction lead to erroneous conclusions about precaution. Scientific Reports, 10: 2314.

    Article  Google Scholar 

  • Wege M, Salas L, LaRue M. 2020. Citizen science and habitat modelling facilitates conservation planning for crabeater seals in the Weddell Sea. Diversity and Distributions, 26(10): 1291–1304.

    Article  Google Scholar 

  • Xavier J C, Raymond B, Jones D C, Griffiths H. 2016. Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems, 19(2): 220–247.

    Article  Google Scholar 

  • Zhang J J, Jiang F, Li G Y, Qin W, Li S Q, Gao H M, Cai Z Y, Lin G H, Zhang T Z. 2019. Maxent modelling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9(11): 6643–6654.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Additional information

Supported by the Impact and Response of Antarctic Seas to Climate Change from Polar Research Institute of China (No. RFSOCC2020-2022-No.18), the National Science Foundation of Tianjin (No. 19JCZDJC40600), and the National Natural Science Foundation of China (No. 42176198)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Liu, L., Liu, Q. et al. The potential distribution of adult Antarctic krill in the Amundsen Sea. J. Ocean. Limnol. 40, 1566–1577 (2022). https://doi.org/10.1007/s00343-021-1181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-021-1181-z

Keyword

Navigation