Skip to main content

Advertisement

Log in

Does wetland watershed land use influence amphibian larval development? A relevant effect of agriculture on biota

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Agriculture practices have been widely proposed as the major cause of amphibian population decline. However, the majority of these results have been based on laboratory experiments. The present study was conducted to test the repercussion of wetland sediment provenance on amphibian larval development. Bufo bufo larvae were used in two different treatments in an outdoor experiment, the first one using sediment from one wetland surrounded by intensive agricultural practices, and the second using sediment with no record of agrochemical uses. A negative effect was observed in the agricultural treatment, from subcellular to individual level. The results showed that the sediment from agricultural practices watershed generates a reduction in survival. Furthermore, individuals that developed under this treatment showed a lower total length and a delay in the time necessary to complete metamorphosis; these features are connected with recruitment success. In the same way, biochemical analysis showed high values of lipid peroxidation in metamorphs developing in sediments from an agricultural area. Finally, the results obtained highlight the importance of considering the sediments, not only the water, as origin treatment, allowing us to understand the consequences on amphibian populations that inhabit areas affected by intensive agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altwegg R, Reyer H U. 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57 (4): 872–882.

    Article  Google Scholar 

  • American Public Health Association. 1995. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC. 874p.

    Google Scholar 

  • Andreu V, Picó Y. 2004. Determination of pesticides and their degradation products in soils: current status, gaps and the future. Journal of Limnology, 64: 13–29.

    Google Scholar 

  • Araújo C V M, Tornero V, Lubián L M, Blasco J, van Bergeijk S A, Cañavate P, Cid Á, Franco D, Prado R, Bartual A, López M G, Ribeiro R, Moreira–Santos M, Torreblanca A, Jurado B, Moreno–Garrido I. 2010. Ring test for wholesediment toxicity assay with–a–benthic marine diatom. Science of the Total Environment, 408 (4): 822–828.

    Article  Google Scholar 

  • Baier F, Jedinger M, Gruber E, Zaller J G. 2016. Temperaturedependence of glyphosate–based herbicide’s effects on egg and tadpole growth of common toads. Frontiers in Environmental Science, 4: 51.

    Article  Google Scholar 

  • Barata C, Varo I, Navarro J C, Arun S, Porte C. 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 140 (2): 175–186.

    Google Scholar 

  • Barnett M L, Mathisen A M. 1997. Tyranny of the P–value: The conflict between statistical significance and common sense. Journal of Dental Research, 76 (1): 534–536.

    Article  Google Scholar 

  • Beck C W, Congdon J D. 2003. Energetics of metamorphic climax in the southern toad ( Bufo terrestris ). Oecologia, 137 (3): 344–351.

    Article  Google Scholar 

  • Beja P, Alcazar R. 2003. Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biolog ical Conservation, 114 (3): 317–326.

    Article  Google Scholar 

  • Bókony V, Mikó Z, Móricz Á M, Krüzselyi D, Hettyey A. 2017. Chronic exposure to a glyphosate–based herbicide makes toad larvae more toxic. Proc eedings of the Royal Society B, 284 (1858): 20170493.

    Article  Google Scholar 

  • Boone M D, James S M. 2003. Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms. Ecological Applications, 13 (3): 829–841.

    Article  Google Scholar 

  • Boone M D, Semlitsch R D. 2002. Interactions of an insecticide with competition and pond drying in amphibian communities. Ecological Applications, 12 (1): 307–316.

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72 (1–2): 248–254.

    Article  Google Scholar 

  • Breden F, Kelly C H. 1982. The effect of conspecific interactions on metamorphosis in Bufo americanus. Ecology, 63 (6): 1 682–1 689.

    Article  Google Scholar 

  • Brunelli E, Bernabò I, Berg C, Lundstedt–Enkel K, Bonacci A, Tripepi S. 2009. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquatic Toxicology, 91 (2): 135–142.

    Article  Google Scholar 

  • Burton Jr G A. 2013. Sediment ecotoxicity. In: Férard J F, Blaise C eds. Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. p.1 003–1 014.

  • Camargo J B D A, Cruz A C F, Campos B G, Araújo G S, Fonseca T G, Abessa D M S. 2015. Use, development and improvements in the protocol of whole–sediment toxicity identification evaluation using benthic copepods. Marine Pollution Bulletin, 91 (2): 511–517.

    Article  Google Scholar 

  • Casado C, Montes C. 1995. Guide of Spanish lakes and wetlands. In: Reyero J M ed. Madrid. 293p.

  • Cavas L, Tarhan L. 2003. Glutathione redox system, GSH–Px activity and lipid peroxidation (LPO)levels in tadpoles of R ridibunda and B. viridis. Cell Biochemistry and Function, 21 (1): 75–79.

    Article  Google Scholar 

  • Congdon J D, Dunham A E, Hopkins W A, Rowe C L, Hinton T G. 2001. Resource allocation–based life histories: a conceptual basis for studies of ecological toxicology. Environmental Toxicology and Chemistry, 20 (8): 1 698–1 703.

    Article  Google Scholar 

  • Cooke A S. 1973. The effects of DDT, when used as a mosquito larvicide, on tadpoles of the frog Rana temporaria. Environmental Pollution, 5 (4): 259–273.

    Article  Google Scholar 

  • Courcelles D M M. 2016. Inorganic fine sediment deposition in rivers with run–of–river hydropower projects and Coastal Tailed Frog ( Ascaphus truei ) tadpoles in coastal British Columbia. University of British Columbia’s Information Repository. 64p.

    Google Scholar 

  • Day K E, Kirby R S, Reynoldson T B. 1995. The effect of manipulations of freshwater sediments on responses of benthic invertebrates in whole–sediment toxicity tests. Environmental Toxicology and Chemistry, 14 (8): 1 333–1 343.

    Article  Google Scholar 

  • de Vicente I, Guerrero F, Cruz–Pizarro L. 2010. Chemical composition of wetland sediments as an integrator of trophic state. Aquatic Ecosystem Health and Management, 13 (1): 99–103.

    Article  Google Scholar 

  • Edwards T M, McCoy K A, Barbeau T, McCoy M W, Thro J M, Guillette Jr L J. 2006. Environmental context determines nitrate toxicity in Southern toad ( Bufo terrestris ) tadpoles. Aquatic Toxicology, 78 (1): 50–58.

    Article  Google Scholar 

  • Esterbauer H, Schaur R J, Zollner H. 1991. Chemistry and biochemistry of 4–hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine, 11 (1): 81–128.

    Article  Google Scholar 

  • Falfushinska H, Loumbourdis N, Romanchuk L, Stolyar O. 2008. Validation of oxidative stress responses in two populations of frogs from Western Ukraine. Chemosphere, 73 (7): 1 096–1 101.

    Article  Google Scholar 

  • García–Muñoz E, Gilbert J D, Parra G, Guerrero F. 2010b. Wetlands classification for amphibian conservation in Mediterranean landscapes. Biodiversity and Conservation, 19 (3): 901–911.

    Article  Google Scholar 

  • García–Muñoz E, Guerrero F, Parra G. 2009. Effects of copper sulfate on growth, development, and escape behavior in Epidalea calamita embryos and larvae. Archives of Environmental Contamination and Toxicology, 56 (3): 557–565.

    Article  Google Scholar 

  • García–Muñoz E, Guerrero F, Parra G. 2010a. Intraspecific and interspecific tolerance to copper sulphate in five Iberian amphibian species at two developmental stages. Archives of Environmental Contamination and Toxicology, 59 (2): 312–321.

    Article  Google Scholar 

  • García–Muñoz E, Guerrero F, Parra G. 2011a. Effects of previous sublethal pulse to ammonium nitrate on mortality and total length on Epidalea calamita larvae. Chemosphere, 84 (5): 671–675.

    Article  Google Scholar 

  • García–Muñoz E, Guerrero F, Parra G. 2011b. Larval escape behavior in anuran amphibians as a wetland rapid pollution biomarker. Marine and Freshwater Behaviour and Phy siology, 44 (2): 109–123.

    Article  Google Scholar 

  • Gerdron A. 2013. Amphibian Ecotoxicology. In: Férard J F, Blaise C eds. Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. p.21–37.

  • Gilbert J D, Guerrero F, Jiménez–Melero R, de Vicente I. 2015. Is the bioproduction number a good index of the trophic state in Mediterranean wetlands? Knowledge and Management of Aquatic Ecosystems, 416: 05.

    Article  Google Scholar 

  • Gosner K L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16 (3): 183–190.

    Google Scholar 

  • Gripp H S, Freitas J S, Almeida E A, Bisinoti M C, Moreira A B. 2017. Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles ( Eupemphix nattereri: Leiuperidae). Ecotoxicology and Environmental Safety, 136: 173–179.

    Article  Google Scholar 

  • Guerrero F, Parra G, Jiménez–Gómez F, Salazar C, Jiménez–Melero R, Galotti A, García–Muñoz E, Lendínez M L, Ortega F. 2006. Ecological studies in Alto Guadalquivir wetlands: a first step towards the application of conservation plans. Limnetica, 25: 95–106.

    Google Scholar 

  • Hagger J A, Jones M B, Leonard D P, Owen R, Galloway T S. 2006. Biomarkers and integrated environmental risk assessment: are there more questions than answers? Integrated Environmental Assessment and Management, 2 (4): 312–329.

    Article  Google Scholar 

  • Halliwell B, Gutteridge J M C. 1989. Free radicals in biology and medicine. Oxford University Press, New York. 543p.

    Google Scholar 

  • Handy R D, Galloway T S, Depledge M H. 2003. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology, 12 (1–4): 331–343.

    Google Scholar 

  • Hopkins W A, Rowe C L, Congdon J D. 1999. Elevated trace element concentrations and standard metabolic rate in banded water snakes ( Nerodia fasciata ) exposed to coal combustion wastes. Environmental Toxicology and Chemistry, 18 (6): 1 258–1 263.

    Article  Google Scholar 

  • Hua J, Relyea R. 2014. Chemical cocktails in aquatic systems: pesticide effects on the response and recovery of >20 animal taxa. Environ men tal Pollution, 189: 18–26.

    Article  Google Scholar 

  • Ingersoll C G. 1995. Sediment test. In: Rand G M. ed. Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. CRC Press, Florida. p.231–256.

  • Junta de Andalucía. 2008. Reglamento específico de producción integrada de olivar. BOJA 83: 9–38.

    Google Scholar 

  • Koprivnikar J, Riepe T B, Calhoun D M, Johnson P T J. 2017. Whether larval amphibians school does not affect the parasite aggregation rule: testing the effects of host spatial heterogeneity in field and experimental studies. Oikos, 127 (1): 99–110.

    Article  Google Scholar 

  • Luoma S N, Carter J L. 1993. Understanding the toxicity of contaminants in sediments: beyond the bioassay–based paradigm. Environmental Toxicology and Chemistry, 12: 793–796.

    Article  Google Scholar 

  • Mann R M, Hyne R V, Choung C B, Wilson S P. 2009. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution, 157 (11): 2 903–2 927.

    Article  Google Scholar 

  • Montes C, Sala O. 2007. La evaluación de los ecosistemas del milenio. Las relaciones entre el funcionamiento de los ecosistemas y el bienestar humano. Ecosistemas, 16 (3): 137–147.

    Google Scholar 

  • Parra G, Jiménez–Melero R, Guerrero F. 2005. Agricultural impacts on Mediterranean wetlands: the effect of pesticides on survival and hatching rates in copepods. International Journal of Limnology, 41 (3): 161–167.

    Article  Google Scholar 

  • Peakall D. 1992. The role of biomarkers in environmental assessment. In: Peakall D ed. Animal Biomarkers as Pollution Indicators. Springer, Dordrecht. p.201–206.

    Book  Google Scholar 

  • Radi A A R, Matkovics B. 1988. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 90 (1): 69–72.

    Article  Google Scholar 

  • Relyea R A, Mills N. 2001. Predator–induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles ( Hyla versicolor ). Proceedings of the National Academy of Sciences of the United States of America, 98 (5): 2 491–2 496.

    Article  Google Scholar 

  • Relyea R A. 2006. The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicol og y, 15 (6): 503–511.

    Article  Google Scholar 

  • Robles–Molina J, Gilbert–López B, García–Reyes J F, Molina–Díaz A. 2014. Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of the Total Environment, 479–480: 247–257.

    Article  Google Scholar 

  • Rodier J. 1989. Análisis de las aguas. Omega, Barcelona. 1 059p.

    Google Scholar 

  • Rowe C L, Kinney O M, Nagle R D, Congdon J D. 1998. Elevated maintenance costs in an anuran ( Rana catesbeiana ) exposed to a mixture of trace elements during the embryonic and early larval periods. Physiological and Biochemical Zoology, 71: 27–35.

    Google Scholar 

  • Salvador A, Garcia–Paris M. 2001. Anfibios españoles: identificación, historia natural y distribución. Esfagnos, Madrid. 269p.

    Google Scholar 

  • Semlitsch R D, Scott D E, Pechmann J H K. 1988. Time and size at metamorphosis related to adult fitness in ambystoma talpoideum. Ecology, 69 (1): 184–192.

    Article  Google Scholar 

  • Sinsch U. 1998. Biologie und ökologie der kreuzkröte. Laurenti Verlag, Bochum. 222p.

    Google Scholar 

  • Slater T F. 1984a. Overview of methods used for detecting lipid peroxidation. Methods in Enzymology, 105: 283–293.

    Article  Google Scholar 

  • Slater T F. 1984b. Free–radical mechanisms in tissue injury. Biochemical Journal, 222 (1): 1–15.

    Article  Google Scholar 

  • Smith D C. 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology, 68 (2): 344–350.

    Article  Google Scholar 

  • Snodgrass J W, Casey R E, Joseph D, Simon J A. 2008. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environmental Pollution, 154 (2): 291–297.

    Article  Google Scholar 

  • Troncoso L, Galleguillos R, Larrain A. 2000. Effects of copper on the fitness of the Chilean scallop Argopecten purpuratus (Mollusca: Bivalvia). Hydrobiologia, 420 (1): 185–189.

    Article  Google Scholar 

  • Vanwalleghem T, Amate J I, de Molina M G, Fernández D S, Gómez J A. 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystem and Environment, 142 (3–4): 341–351.

    Article  Google Scholar 

  • Wood S L R, Richardson J S. 2009. Impact of sediment and nutrient inputs on growth and survival of tadpoles of the western toad. Freshwater Biology, 54 (5): 1 120–1 134.

    Article  Google Scholar 

Download references

Acknowledgement

Our thanks go to the Consejería de Medio Ambiente (Junta de Andalucía) for permission to use the amphibian surveys. E.G.-M. has a research grant from the FCT postdoctoral programme (SFRH/ BPD/78206/2010). We also like to express our sincere thanks to the reviewers for their valuable comments and suggestions, which have been very helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Parra.

Additional information

Supported by the Ministerio de Educación y Ciencia (Spain) Project (No. CGL2007-61482; co-funded by the European Regional Development Fund)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Muñoz, E., Guerrero, F., Arechaga, G. et al. Does wetland watershed land use influence amphibian larval development? A relevant effect of agriculture on biota. J. Ocean. Limnol. 37, 160–168 (2019). https://doi.org/10.1007/s00343-019-7378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7378-8

Keyword

Navigation