Skip to main content
Log in

The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pesticides are applied throughout the world often with unintended consequences on ecological communities. In some regions, pesticides are associated with declining amphibians, but we have a poor understanding of the underlying mechanisms. Pesticides break down more slowly under low pH conditions and become more lethal to amphibians when combined with predatory stress, but these phenomena have not been tested outside of the laboratory. I examined how pH, predatory stress, and a single application of an insecticide (carbaryl) affected the survival and growth of larval bullfrogs (Rana catesbeiana) and green frogs (R. clamitans) in outdoor mesocosms. Decreased pH had no effect on survival, but caused greater tadpole growth. Low concentrations of carbaryl had no effect on either species, but high concentrations caused lower survival and greater growth in bullfrogs. Predatory stress and reduced pH did not make carbaryl more lethal likely due to the rapid breakdown rate of carbaryl in outdoor mesocosms. Thus, whereas the stress of pH and predators can make carbaryl (and other pesticides) more lethal under laboratory conditions using repeated applications of carbaryl, these stressors did not interact under mesocosm conditions using a single application of carbaryl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alford RA, Richards SJ (1999) Global amphibian declines: a problem in applied ecology. Ann Rev Ecol Syst 30:133–165

    Article  Google Scholar 

  • Aly OM, El-Dib MA (1971). Studies on the persistence of some carbamate insecticides in the aquatic environment—I: hydrolysis of sevin, baygon, pyrolan and dimetilan in waters. Water Research 5:1191–1205

    Article  CAS  Google Scholar 

  • Boone MD, Bridges CM (1999) The effect of temperature on the potency of carbaryl for survival of tadpoles of the green frog (Rana clamitans). Environ Toxicol Chem 18:1482–1484

    Article  CAS  Google Scholar 

  • Boone MD, James SM (2003) Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms. Ecol Appl 13:829–841

    Article  Google Scholar 

  • Boone MD, Bridges CM (2003) Effects of carbaryl on green frog (Rana clamitans) tadpoles: timing of exposure versus multiple exposures. Environ Toxicol Chem 22:2695–2702

    Article  CAS  Google Scholar 

  • Boone MD, Bridges CM, Rothermel BB (2001) Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide. Oecologia 129:518–524

    Google Scholar 

  • Boone MD, Semlitsch RD (2001) Interactions of an insecticide with larval density and predation in experimental amphibian communities. Conserv Biol 15:228–238

    Article  Google Scholar 

  • Boone MD, Semlitsch RD (2002) Interactions of an insecticide with competition and pond drying in amphibian communities. Ecol Appl 12:307–316

    Article  Google Scholar 

  • Boone MD, Semlitsch RD (2003) Interactions of bullfrog tadpole predators and an insecticide: predation release and facilitation. Oecologia 137:610–616

    Article  Google Scholar 

  • Boone MD, Semlitsch RD, Fairchild JF, Rothermel BB (2004) Effects of an insecticide on amphibians in large-scale experimental ponds. Ecol Appl 14:685–691

    Article  Google Scholar 

  • Bridges CM (1997) Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environ Toxicol Chem 16:1935–1939

    Article  CAS  Google Scholar 

  • Bridges CM (1999) Effect of a pesticide on tadpole activity and predator avoidance behavior. J Herpetol 33:303–306

    Article  Google Scholar 

  • Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of southern leopard frog (Rana sphenocephala). Arch Environ Con Toxicol 39:91–96

    Article  CAS  Google Scholar 

  • Bridges CM, Boone MD (2003) The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol Conserv 113:49–54

    Article  Google Scholar 

  • Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499

    Article  Google Scholar 

  • Bridges CM, Semlitsch RD (2001) Genetic variation in insecticide tolerance in a population of southern leopard frogs (Rana sphenocephala): implications for amphibian conservation. Copeia 2001:7–13

    Article  Google Scholar 

  • Broomhall S (2002) The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability in predation in Litoria citropa tadpoles. Aqua Toxicol 61:243–250

    Article  CAS  Google Scholar 

  • Chen CY, Hathaway KM, Folt CL (2004) Multiple stress effects of Vision® herbicide, pH, and food on zooplankton and larval amphibian species from forest wetlands. Environ Toxicol Chem 23:823–831

    Article  CAS  Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902

    Article  Google Scholar 

  • Davidson C, Shafer HB, Jennings MR (2001) Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecol Appl 11:464–479

    Article  Google Scholar 

  • Davidson C., Shafer HB, Jennings MR (2002) Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conserv Biol 16:1588–1601

    Article  Google Scholar 

  • Donaldson D, Kiely T, Grube A (2002) Pesticides Industry Sales and Usage: 1998 and 1999 Market Estimates. USEPA Report No. 733-R-02-001

  • Fellers GM, McConnell LL, Pratt D, Datta S (2004) Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA. Environ Toxicol Chem 23:2170–2177

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hanazato T, Yasuno M (1987) Effects of a carbamate insecticide, carbaryl, on summer phyto- and zooplankton communities in ponds. Environ Pollut 48:145–159

    Article  CAS  Google Scholar 

  • Hanazato T, Yasuno M (1989) Effects of carbaryl on spring zooplankton communities in ponds. Environmental Pollut 56:1–10

    Article  CAS  Google Scholar 

  • Houlihan JE, Findlay CS, Schmidt BR, Meyers AH, Kuzmin SL (2001) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  Google Scholar 

  • Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian population declines. Nature 410:681–684

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Leibold MA, Wilbur HM (1992) Interactions between food-web structure and nutrients on pond organisms. Nature 360:341–343

    Article  Google Scholar 

  • LeNoir JS, McConnell LL, Fellers GM, Cahill TM, Seiber JN (1999) Summertime transport of current-use pesticides from California’s central valley to the Sierra Nevada Mountain range, USA. Environ Toxicol Chem 18:2715–2722

    Article  CAS  Google Scholar 

  • Lohner TW, Fisher SW (1990) Effects of pH and temperature on the acute toxicity and uptake of carbaryl in the midge, Chironomus riparius. Aqua Toxicol 16:335–354

    Article  CAS  Google Scholar 

  • Marian MP, Arul V, Pandian TJ (1983) Acute and chronic effects of carbaryl on survival, growth, and metamorphosis in the bullfrog (Rana tigrina). Arch Environ Con Toxicol 12:271–275

    Article  CAS  Google Scholar 

  • McConnell LL, LeNoir JS, Datta S, Seiber JN (1998) Wet deposition of current-use pesticides in the Sierra Nevada Mountain range, California, USA. Environ Toxicol Chem 17:1908–1916

    Article  CAS  Google Scholar 

  • Mills NE, Semlitsch RD (2004) Competition and predation mediate the indirect effects of an insecticide on southern leopard frogs. Ecol Appl 14:1041–1054

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (1986) Wetlands. Van Nostrand Reinhold, New York, p 539

    Google Scholar 

  • Norris LA, Lorz HW, Gregory SZ (1983) Influence of forest and range land management on anadramous fish habitat in western North America: forest chemicals. PNW-149. General Technical Report (U. S. D. A. Forest Service, Portland, OR)

  • Peacor SD (2002) Positive effect of predators on prey growth rate through induced modifications of prey behaviour. Ecol Lett 5:77–85

    Article  Google Scholar 

  • Peterson HG, Boutin C, Martin PA, Freemark KE, Ruecker NJ, Moody MJ (1994) Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aqua Toxicol 28:275–292

    Article  CAS  Google Scholar 

  • Planas D (1996) Acidification effects. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Academic Press, London, pp 497–530

  • Relyea RA (2003) Predator cues and pesticides: a double dose of danger for amphibians. Ecol Appl 13:1515–1521

    Article  Google Scholar 

  • Relyea RA (2004a) Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85:172–179

    Article  Google Scholar 

  • Relyea RA (2004b) Synergistic impacts of malathion and predatory stress on six species of North American tadpoles. Environ Toxicol Chem 23:1080–1084

    Article  CAS  Google Scholar 

  • Relyea RA (2005a) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  • Relyea RA (2005b) The lethal impacts of Roundup and predatory stress on six species of North American tadpoles. Arch Environ Con Toxicol 48:351–357

    Article  CAS  Google Scholar 

  • Relyea RA, Werner EE (2000) Morphological plasticity in four larval anurans distributed along an environmental gradient. Copeia 2000:178–190

    Article  Google Scholar 

  • Relyea RA, Mills N (2001) Predator-induced stress makes the pesticide carbaryl more deadly to grey treefrog tadpoles (Hyla versicolor). PNAS 98:2491–2496

    Article  CAS  Google Scholar 

  • Semlitsch RD, Bridges CM, Welch AM (2000) Genetic variation and a fitness tradeoff in the tolerance of gray treefrog (Hyla versicolor) tadpoles to the insecticide carbaryl. Oecologia 125:179–185

    Article  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Persistence of 12 insecticides in water. Water Res 14:1089–1093

    Article  CAS  Google Scholar 

  • Sikka HC, Miyazaki S, Lynch RS (1975) Degradation of carbaryl and 1-naphthol by marine microorganisms. Bull Environ Con Toxicol 13:666–672

    Article  CAS  Google Scholar 

  • Sparling DW, Fellers GM, McConnell LS (2001) Pesticides and amphibian population declines in California, USA. Environ Toxicol Chem 20:1591–1595

    Article  CAS  Google Scholar 

  • Wake DB (1998) Action on amphibians. TREE 13:379–380

    Google Scholar 

  • Wauchope RD, Haque R (1973) Effects of pH, light and temperature on carbaryl in aqueous media. Bull Environ Con Toxicol 9:257–260

    Article  CAS  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DF (1978) Carbaryl, propham and chlorpropham: a comparison of the rates of hydrolysis and photolysis with the rate of biolysis. Water Res 12:565–571

    Article  CAS  Google Scholar 

  • Zaga A, Little EE, Raben CF, Ellersieck MR (1998) Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians. Environ Toxicol Chem 17:2543–2553

    Article  CAS  Google Scholar 

Download references

Acknowledgments

My thanks to Josh Auld, Adam Marko, Jason Hoverman, Elizabeth Kennedy, Stacy Phillips, and Nancy Schoeppner for assisting with the experiments. Josh Auld, Jason Hoverman, and Nancy Schoeppner provided insightful reviews of the manuscript. This research was funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick A. Relyea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Relyea, R.A. The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15, 503–511 (2006). https://doi.org/10.1007/s10646-006-0086-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0086-0

Keywords

Navigation