Skip to main content
Log in

Functional characterization of a Δ6 fatty acid desaturase gene and its 5′-upstream region cloned from the arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta)

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

It is suggested that Δ6 fatty acid desaturase (FAD) plays a critical role in the biosynthesis of polyunsaturated fatty acids in plants and microalgae. But why does it adapt to the changed environments such as nitrogen starvation is seldom understood. One Δ6 FAD gene ( MiD6fad ) from an arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta) was first heterologously expressed in Saccharomyces cerevisiae for the identification of function. The fatty acid profile of transgenic yeast detected by gas chromatography-mass spectrometry illustrated that the enzyme MiD6FAD could convert linoleic and α - linolenic acids to γ-linolenic and stearidonic acids, respectively, demonstrating that MiD6fad encoded a Δ6 FAD. A 1 965-bp fragment of the cloned 2 347-bp 5′-upstream region of MiD6fad was next subcloned and fused upstream with green fluorescent protein (GFP) gene to replace the GAL1 promoter of the vector pYES2. The generated construct was transformed into S. cerevisiae for function determination. Confocal microscopic images of the transformed line illustrated that this inserted fragment could drive GFP expression, which was further verified by fluorescence intensity quantification and Western blot analysis using anti- GFP antibody. The conversion efficiency (approximately 2% - 3%) of MiD6FAD was much lower than the reported ω 3 FAD and Δ6 elongase in this microalga, suggesting that MiD6FAD catalysed the possible ratelimiting step for ArA biosynthesis. The presence of several putative cis -acting regulatory elements in this identified promoter sheds new light on the regulation mechanism research of Δ6 FAD transcription for the ArA production in M. incisa in changing environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Camargo A, Llamas Á, Schnell R A, Higuera J J, González–Ballester D, Lefebvre P A, Fernández E, Galván A. 2007. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell, 19 (11): 3 491–3 503.

    Article  Google Scholar 

  • Chen C X, Sun Z, Cao H S, Fang F L, Ouyang L L, Zhou Z G. 2015. Identification and characterization of three genes encoding acyl–CoA: diacylglycerolacyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl. Algal Res earch, 12: 280–288.

    Article  Google Scholar 

  • Chiang T Y, Marzluf G A. 1994. DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry, 33 (2): 576–582.

    Article  Google Scholar 

  • Dong X W, He Q F, Peng Z Y, Yu J H, Bian F, Li Y Z, Bi Y P. 2016. Production of γ–linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes. Chin ese J ournal of Oceanology and Limn ology, 34(4): 772–780.

    Google Scholar 

  • Dunn M A, White A J, Vural S, Hughes M A. 1998. Identification of promoter elements in a low–temperature–responsive gene ( blt 4.9) from barley ( Hordeum vulgare L.). Plant Molecular Biology, 38 (4): 551–564.

    Article  Google Scholar 

  • Guschina I A, Harwood J L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog ress in Lipid Res earch, 45 (2): 160–186.

    Article  Google Scholar 

  • Harwood J L, Guschina I A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91 (6): 679–684.

    Article  Google Scholar 

  • Hazel J R. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu al Rev iew of Physiology, 57: 19–42.

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cisacting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res earch, 27 (1): 297–300.

    Article  Google Scholar 

  • Houslay M D, Gordon L M. 1983. The activity of adenylate cyclase is regulated by the nature of its lipid environment. Curr ent Top ics in Membr anes and Transport, 18: 179–231.

    Article  Google Scholar 

  • Huang J Z, Jiang X Z, Xia X F, Yu A Q, Mao R Y, Chen X F, Tian B Y. 2011. Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′–upstream region from marine fungus Thraustochytrium sp. FJN–10. Mar ine Biotechnology, 13 (1): 12–21.

    Article  Google Scholar 

  • Iskandarov U, Khozin–Goldberg I, Cohen Z. 2010. Identification and characterization of Δ12, Δ6, and Δ5 desaturases from the green microalga Parietochloris incisa. Lipids, 45 (6): 519–530.

    Article  Google Scholar 

  • Kaiser C, Michaelis S, Mitchel A. 1994. Methods in Yeast Genetics. Cold Spring Harbor. Cold Spring Harbor Laboratory Press, New York. 202p.

    Google Scholar 

  • Kensy F, Zang E, Faulhammer C, Tan R K, Büchs J. 2009. Validation of a high–throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb ial Cell Fact ories, 8: 31.

    Article  Google Scholar 

  • Khozin–Goldberg I, Leu S, Boussiba S. 2016. Microalgae as a source for VLC–PUFA production. In: Nakamura Y, Li–Beisson Y eds. Lipids in Plant and Algae Development. Springer, Cham. p.471–510.

  • Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. 2006. Seed–specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis–regulatory elements in the SeFAD2 promoter and enhancers in the 5′–UTR intron. Molecular Genet ics and Genomics, 276 (4): 351–368.

    Article  Google Scholar 

  • Laoteng K, Ruenwai R, Tanticharoen M, Cheevadhanarak S. 2005. Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiology Lett ers, 245 (1): 169–178.

    Article  Google Scholar 

  • Leonard A E, Pereira S L, Sprecher H, Huang Y S. 2004. Elongation of long–chain fatty acids. Prog ress in Lipid Res earch, 43 (1): 36–54.

    Article  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis–acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res earch, 30 (1): 325–327.

    Article  Google Scholar 

  • Li H, Ouyang L L, Zhou Z G. 2012. Low–temperature–induced expression of a ω3 fatty acid desaturase gene ( ω3FAD ) from Myrmecia incisa in Saccharomyces cerevisiae. J ournal of Agric ultural Biotechnology, 20 (7): 735–744. (in Chinese with English abstract)

    Google Scholar 

  • Liu F, Li H, Li C Y, Ouyang L L, Zhou Z G. 2012. Characterization of fatty acid desaturase (FAD) genes in Myrmecia incisa and the effect of nitrogen starvation on their transcription. J ournal of Fish ery Sci ences of China, 19 (5): 729–740. (in Chinese with English abstract)

    Google Scholar 

  • Los D A, Mironov K S, Allakhverdiev S I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth esis Res earch, 116 (2–3): 489–509.

    Article  Google Scholar 

  • Los D A, Murata N. 1998. Structure and expression of fatty acid desaturases. Biochim ica et Biophys ica Acta, 1394 (1): 3–15.

    Article  Google Scholar 

  • Los D A, Ray M K, Murata N. 1997. Differences in the controlof the temperature–dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Molecular Microbiology, 25 (6): 1 167–1 175.

    Google Scholar 

  • Lowry J A, Atchley W R. 2000. Molecular evolution of the GATA family of transcription factors: conservation within the DNA–binding domain. J ournal of Molecular Evolution, 50 (2): 103–115.

    Article  Google Scholar 

  • Mansilla M C, Banchio C E, De Mendoza D. 2008. Signalling pathways controlling fatty acid desaturation. In: Quinn P J, Wang X Y eds. Lipids in Health and Disease. Springer, Dordrecht. p.71–99.

  • Martin C E, Oh C S, Jiang Y D. 2007. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim ica et Biophys ica Acta, 1771 (3): 271–285.

    Article  Google Scholar 

  • Meesapyodsuk D, Qiu X. 2012. The front–end desaturase: structure, function, evolution and biotechnological use. Lipids, 47 (2): 227–237.

    Article  Google Scholar 

  • Murata N, Wada H. 1995. Acyl–lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem ical J ournal, 308 (1): 1–8.

    Google Scholar 

  • Na–Ranong S, Laoteng K, Kittakoop P, Tantichareon M, Cheevadhanarak S. 2005. Substrate specificity and preference of Δ 6–desaturase of Mucor rouxii. FEBS Lett ers, 579 (12): 2 744–2 748.

    Article  Google Scholar 

  • Nayeri F D, Yarizade K. 2014. Bioinformatics study of delta–12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Molecular Biology Rep orts, 41 (8): 5 077–5 087.

    Article  Google Scholar 

  • Nishiuchi T, Nakamura T, Abe T, Kodama H, Nishimura M, Iba K. 1995. Tissue–specific and light–responsive regulation of the promoter region of the Arabidopsis thaliana chloroplast–3 fatty acid desaturase gene ( FAD7 ). Plant Molecular Biology, 29 (3): 599–609.

    Article  Google Scholar 

  • Nwankwo J O, Spector A A, Domann F E. 2003. A nucleotide insertion in the transcriptional regulatory region of FADS2 gives rise to human fatty acid delta–6–desaturase deficiency. J ournal of Lipid Res earch, 44 (12): 2 311–2 319.

    Article  Google Scholar 

  • Ouyang L L, Chen S H, Li Y, Zhou Z G. 2013a. Transcriptome analysis reveals unique C4–like photosynthesis and oil body formation in an arachidonic acid–rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14: 396.

    Article  Google Scholar 

  • Ouyang L L, Li H, Liu F, Tong M, Yu S Y, Zhou Z G. 2013b. Accumulation of arachidonic acid in a green microalga, M yrmecia incisa H4301, enhanced by nitrogen starvation and its molecular regulation mechanisms. In: Dumancas G G, Murdianti B S, Lucas E A eds. Arachidonic Acid: Dietary Sources and General Functions. Nova Science Publishers, Inc., New York. p.1–20.

  • Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus C M. 2004. Production of very long chain polyunsaturated omega–3 and omega–6 fatty acids in plants. Nat ure Biotechnology, 22 (6): 739–745.

    Article  Google Scholar 

  • Rastogi R, Bate N J, Sivasankar S, Rothstein S J. 1997. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Molecular Biology, 34 (3): 465–476.

    Article  Google Scholar 

  • Reisigl H. 1964. Zur systematik und ökologie alpiner Bodenalgen. Ö sterreichische Botanische Zeitschrift, 111 (4): 402–499.

    Article  Google Scholar 

  • Reyes J C, Muro–Pastor M I, Florencio F J. 2004. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiology, 134 (4): 1 718–1 732.

    Article  Google Scholar 

  • Russell N J. 1984. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends in Biochem ical Sci ences, 9 (3): 108–112.

    Article  Google Scholar 

  • Saed Taha R, Ismail I, Zainal Z, Abdullah S N A. 2012. The stearoyl–acyl–carrier–protein desaturase promoter ( Des ) from oil palm confers fruit–specific GUS expression in transgenic tomato. J ournal of Plant Physiology, 169 (13): 1 290–1 300.

    Article  Google Scholar 

  • Schnell R A, Lefebvre P A. 1993. Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics, 134 (3): 737–747.

    Google Scholar 

  • Sheff M A, Thorn K S. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast, 21 (8): 661–670.

    Article  Google Scholar 

  • Skala M C, Riching K M, Gendron–Fitzpatrick A, Eickhoff J, Eliceiri K W, White J G, Ramanujam N. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc eedings of the Nat ional Acad emy of Sci ences of the U nited S tates of A merica, 104 (49): 19 494–19 499.

    Article  Google Scholar 

  • Stanier R Y, Kunisawa R, Mandel M, Cohen–Bazire G. 1971. Purification and properties of unicellular blue–green algae (order Chroococcales). Bacteriological Rev iews, 35 (2): 171–205.

    Google Scholar 

  • Suzuki I, Los D A, Kanesaki Y, Mikami K, Murata N. 2000. The pathway for perception and transduction of lowtemperature signals in Synechocystis. EMBO J ournal, 19 (6): 1 327–1 334.

    Article  Google Scholar 

  • Tan L, Li S E, Zhang X Y, Ma F Y. 2015. Cloning and functional analysis of Δ6–desaturase gene and its upstream region from Mortierella sp. AGED. Journal of the Science of Food and Agriculture, 95 (15): 3 077–3 083.

    Article  Google Scholar 

  • Tao Y, Marzluf G A. 1999. The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit–2 mRNA and protein. Curr ent Genet ics, 36 (3): 153–158.

    Article  Google Scholar 

  • Thompson G A Jr. 1989. Membrane acclimation by unicellular organisms in response to temperature change. Journal of Bioenerg etics and Biomembr anes, 21 (1): 43–60.

    Article  Google Scholar 

  • Tocher D R, Leaver M J, Hodgson P A. 1998. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog ress in Lipid Res earch, 37 (2–3): 73–117.

    Article  Google Scholar 

  • Tong M, Yu S Y, Ouyang L L, Zhou Z G. 2011. Comparison of increased arachidonic acid content in Myrmecia incisa cultured during the course of nitrogen or phosphorus starvation. J ournal of Fish eries of China, 35 (5): 763–773. (in Chinese with English abstract)

    Google Scholar 

  • Wallis J G, Watts J L, Browse J. 2002. Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences, 27 (9): 467–473.

    Article  Google Scholar 

  • Wan X, Zhang Y B, Wang P, Jiang M L. 2011. Molecular cloning and expression analysis of a delta 6–fatty acid desaturase gene from Rhizopus stolonifer strain YF6 which can accumulate high levels of gamma–linolenic acid. J ournal of Microbiology, 49 (1): 151–154.

    Article  Google Scholar 

  • Warude D, Joshi K, Harsulkar A. 2006. Polyunsaturated fatty acids: biotechnology. Crit ical Rev iews in Biotechnology, 26 (2): 83–93.

    Article  Google Scholar 

  • Wu S J, Zhang L J, Chen X L, Miao X M, Wang J, Fu H. 2013. Identification and functional analysis of a Δ6–desaturase gene and the effects of temperature and wounding stresses on its expression in Microula sikkimensis leaves. Biosci ence, Biotechnology, and Biochem istry, 77 (9): 1 925–1 930.

    Article  Google Scholar 

  • Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. 2014. Characterization of the promoter and 5′–UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 545 (1): 45–55.

    Article  Google Scholar 

  • Xue W B, Liu F, Sun Z, Zhou Z G. 2016. A Δ–9 fatty acid desaturase gene in the microalga Myrmecia incisa Reisigl: cloning and functional analysis. International Journal of Molecular Sciences, 17 (7): 1143.

    Article  Google Scholar 

  • Ye R X, Yu Z, Shi W W, Gao H J, Bi Y H, Zhou Z G. 2014. Characterization of α–type carbonic anhydrase (CA) gene and subcellular localization of α–CA in the gametophytes of Saccharina japonica. Journal of Applied Phycology, 26 (2): 881–890.

    Article  Google Scholar 

  • Yu S Y, Li H, Tong M, Ouyang L L, Zhou Z G. 2012. Identification of a Δ6 fatty acid elongase gene for arachidonic acid biosynthesis localized to the endoplasmic reticulum in the green microalga Myrmecia incisa Reisigl. Gene, 493 (2): 219–227.

    Article  Google Scholar 

  • Zhang C J, Hou Y Q, Hao Q G, Chen H F, Chen L M, Yuan S L, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Zhou X A, Huang W J. 2015. Genome–wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One, 10 (4): e0125174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhou  (周志刚).

Additional information

Supported by the National Natural Science Foundation of China (No. 31172389), the Special Project of Marine Renewable Energy from the State Oceanic Administration (No. SHME2011SW02), and the Shanghai Universities Peak Discipline Project of Aquaculture

Electronic supplementary material

343_2019_7305_MOESM1_ESM.pdf

Functional characterization of a Δ6 fatty acid desaturase gene and its 5′-upstream region cloned from the arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cao, H., Ning, P. et al. Functional characterization of a Δ6 fatty acid desaturase gene and its 5′-upstream region cloned from the arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta). J. Ocean. Limnol. 36, 2308–2321 (2018). https://doi.org/10.1007/s00343-019-7305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7305-z

Keyword

Navigation