Skip to main content
Log in

The combined effects of Dolichospermum flos-aquae, light, and temperature on microcystin production by Microcystis aeruginosa

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The effects of light, temperature, and coculture on the intracellular microcystin-LR (MC-LR) quota of Microcystis aeruginosa were evaluated based on coculture experiments with nontoxic Dolichospermum (Anabaena) flos-aquae. The MC-LR quota and transcription of mcyB and mcyD genes encoding MC synthetases in M. aeruginosa were evaluated on the basis of cell counts, high-performance liquid chromatography, and reverse-transcription quantitative real-time PCR. The MC-LR quotas of M. aeruginosa in coculture with a 1/1 ratio of inoculum of the two species were significantly lower relative to monocultures 6-d after inoculation. Decreased MC-LR quotas under coculture conditions were enhanced by increasing the D. flos-aquae to M. aeruginosa ratio in the inoculum and by environmental factors, such as temperature and light intensity. Moreover, the transcriptional concentrations of mcyB and mcyD genes in M. aeruginosa were significantly inhibited by D. flos-aquae competition in coculture (P <0.01), lowered to 20% of initial concentrations within 8 days. These data suggested that coculture eff ects by D. flos-aquae not only reduced M. aeruginosa’s intracellular MC-LR quota via inhibition of genes encoding MC synthetases, but also that this eff ect was regulated by environmental factors, including temperature and light intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bittencourt-Oliveira M do C, Kujbida P, Cardozo K H M, Carvalho V M, Moura A do N, Colepicolo P, Pinto E. 2005. A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komárek et al. Biochem. Biophys. Res. Commun., 326(3): 687–694.

    Article  Google Scholar 

  • Briand E, Bormans M, Quiblier C, Salencon M J, Humbert J F. 2012. Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One. 7 (1): e29981.

    Article  Google Scholar 

  • Briand E, Yéprémian C, Humbert J F, Quiblier C. 2008. Competition between microcystin-and non-microcystinproducing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions. Environ. Microbiol., 10(12): 3337–3348.

    Article  Google Scholar 

  • Bustin S A. 2000. Absolute quantification of mRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol., 25(2): 169–193.

    Article  Google Scholar 

  • Butler N, Carlisle J C, Linville R, Washburn B. 2009. Microcystins: a Brief Overview of Their Toxicity and Effects, with Special Reference to Fish, Wildlife, and Livestock. Ecotoxicology Program Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency, Sacramento, CA, USA, p.1–17.

    Google Scholar 

  • Carmichael W W. 1994. The toxins of cyanobacteria. Sci. Am., 2 70(1): 78–86.

    Article  Google Scholar 

  • Chen J, Hu L B, Zhou W, Yan S H, Yang J D, Xue Y F, Shi Z Q. 2010. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. Int. J. Mol. Sci., 11(3): 896–911.

    Google Scholar 

  • Chen Y W, Qin B Q, Teubner K, Dokulil M T. 2003. Long-term dynamics of phytoplankton assemblages: microcystis -domination in Lake Taihu, a large shallow lake in China. J. Plankton Res., 25(4): 445–453.

    Article  Google Scholar 

  • Dawson R M. 1998. The toxicology of microcystins. Toxicon. 36(7): 953–962.

    Article  Google Scholar 

  • Fahnenstiel G L, Millie D F, Dyble J, Litaker R W, Tester P A, McCormick M J, Rediske R, Klarer D. 2008. Microcystin concentrations and cell quotas in Saginaw Bay, Lake Huron. Aquatic Ecosystem Health & Management. 11(2): 190–195.

    Article  Google Scholar 

  • Gan N Q, Xiao Y, Zhu L, Wu Z X, Liu J, Hu C L, Song L R. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol., 14(3): 730–742.

    Article  Google Scholar 

  • Ginn H P, Pearson L A, Neilan B A. 2010. NtcA from Microcystis aeruginosa PCC 7806 is autoregulatory and binds to the microcystin promoter. Appl. Environ. Microbiol., 76(13): 4362–4368.

    Article  Google Scholar 

  • Grosse Y, Baan R, Straif K, Secretan B, EI Ghissassi F, Cogliano V. 2006. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol., 7(8): 628–629.

    Article  Google Scholar 

  • Health Canada. 2002. Guidelines for Canadian drinking water quality: supporting documentation. Cyanobacterial Toxins-Microcystin-LR.

    Google Scholar 

  • Horst G P, Sarnelle O, White J D, Hamilton S K, Kaul R B, Bressie J D. 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res., 54: 188–198.

    Article  Google Scholar 

  • Hu X, Liu Y G, Zeng G M, Hu X J, Wang Y Q, Zeng X X. 2014. Effects of limonene stress on the growth of and microcystin release by the fresh water cyanobacterium Microcystis aeruginosa FACHB-905. Ecotoxicol. Environ. Saf., 105: 121–127.

    Article  Google Scholar 

  • Jang M H, Ha K, Joo G J, Takamura N. 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology. 48(9): 1540–1550.

    Article  Google Scholar 

  • Kaebernick M, Neilan B A, Börner T, Dittmann E. 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol., 66(8): 3387–3392.

    Article  Google Scholar 

  • Karadžic V, Subakov-Simic G, Krizmanic J, Natic D. 2010. Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination. 255(1-3): 91–96.

    Article  Google Scholar 

  • Krishnamurthy T, Carmichael W W, Sarver E W. 1986. Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon. 24(9): 865–873.

    Google Scholar 

  • Kuniyoshi T M, Sevilla E, Bes M T, Fillat M F, Peleato M L. 2013. Phosphate deficiency (N/P 40: 1) induces mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Plant Physiol. Biochem., 65: 120–124.

    Article  Google Scholar 

  • Kurmayer R. 2011. The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J. Phycol., 47(1): 200–207.

    Google Scholar 

  • Laub J, Henriksen P, Brittain S M et al. 2002. [ADMAdda 5 ]-microcystins in Planktothrix agardhi i strain PH-123 (cyanobacteria)-importance for monitoring of microcystins in the environment. Environ. Toxicol., 17(4): 351–357.

    Article  Google Scholar 

  • LeBlanc S, Pick F R, Aranda-Rondriguze R. 2005. Allelopathic effects of the toxic cyanobacterium Microcystis aeruginosa on duckweed, Lemma gibba L. Environ. Toxicol., 20(1): 67–73.

    Article  Google Scholar 

  • Lehman P W, Boyer G, Satchwell M, Waller S. 2008. The influence of environmental conditions on the seasonal variation of Microcystis cell density and microcystins concentration in San Francisco Estuary. Hydrobiologia. 600(1): 187–204.

    Article  Google Scholar 

  • Li Y X, Li D H. 2012. Competition between toxic Microcystics aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. J. Appl. Phycol., 24(1): 69–78.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-C T method. Methods. 25(4): 402–408.

    Article  Google Scholar 

  • Oh H M, Lee S J, Jang M H, Yoon B D. 2000. Microcystin production by Microcystis aeruginosa in a phosphorouslimited chemostat. Appl. Environ. Microbiol., 66(1): 176–179.

    Article  Google Scholar 

  • Orr P Y, Jones G J. 1998. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Lancet Oceanogr., 43(7): 1604–1614.

    Google Scholar 

  • Papadimitriou T, Armeni E, Stalikas C D, Kagalou I, Leonardos I D. 2012. Detection of microcystins in Pamvotis lake water and assessment of cyanobacterial bloom toxicity. Environ mental Monit oring A nd Assess ment. 184(5): 3043–3052.

    Article  Google Scholar 

  • Pineda-Mendoza R M, Zúñiga G, Martínez-Jerónimo F. 2014. Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression. Toxicon. 80: 78–86.

    Article  Google Scholar 

  • Rantala A, Rajaniemi-Wacklin P, Lyra C, Lepistö L, Rintala J, Mankiewicz-Boczek J, Sivonen K. 2006. Detection of microcystin-producing cyanobacteria in Finnish Lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol., 72(9): 6101–6110.

    Article  Google Scholar 

  • Rinta-Kanto J M, Konopko E A, De Bruyn J M, Bourbonniere R A, Boyer G L, Wilhelm S W. 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae. 8(5): 665–673.

    Article  Google Scholar 

  • Ríos V, Moreno I, Prieto A I, Soria-Díaz M E, Frías J E, Cameán A M. 2014. Comparison of Microcystis aeruginosa (PCC7820 and PCC7806) growth and intracellular microcystins content determined by liquid chromatography-mass spectrometry, enzyme-linked immunosorbent assay anti-Adda and phosphatase bioassay. J. Water Health. 12(1): 69–80.

    Article  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer B L, Buikema W, Haselkorn R, Sivonen K. 2004. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl. Environ. Microbiol., 70(2): 686–692.

    Article  Google Scholar 

  • Rzymski P, Poniedzialek B, Kokocinski M, Jurczak T, Lipski D, Wiktorowicz K. 2014. Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae. 35: 1–8.

    Article  Google Scholar 

  • Saker M L, Welker M, Vasconcelos V M. 2007. Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl. Microbiol. Biot echnol., 73(5): 1136–1142.

    Article  Google Scholar 

  • Schatz D, Keren Y, Hadas O, Carmeli S, Sukenik A, Kaplan A. 2005. Ecological implications of the emergence of nontoxic subcultures from toxic Microcystis strains. Environ. Microbiol., 7(6): 798–805.

    Article  Google Scholar 

  • Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Berner T, Dittmann E, Kaplan A. 2007. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol., 9(4): 965–970.

    Article  Google Scholar 

  • Schmidt J R, Wilhelm S W, Boyer G L. 2014. The fate of Microcystins in the environment and challenges for monitoring. Toxins. 6(12): 3354–3387.

    Article  Google Scholar 

  • Scott L L, Downing S, Phelan R R, Downing T G. 2014. Environmental modulation of microcystin and ß-N-methylamino-L-alanine as a function of nitrogen availability. Toxicon. 87: 1–5.

    Article  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes M T, Fillat M F, Peleato M L. 2008. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ. Microbiol., 10(10): 2476–2483.

    Article  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes M T, Peleato M L, Fillat M F. 2010. Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology. 19(7): 1167–1173.

    Article  Google Scholar 

  • Song R F, Wang G X, Xu Y, Shao J H, Wang Z J, Liu Y, Li R H. 2011. Transcriptional response of microcystin biosynthesis gene cluster of Microcystis aeruginosa PCC7806 under Daphnia stress using real-time RT-PCR technique. J. Lake Sci., 23(1): 150–154.

    Article  Google Scholar 

  • Te S H, Gin K Y H. 2011. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Alage. 10(3): 319–329.

    Article  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan B A. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem. Biol., 7(10): 753–764.

    Article  Google Scholar 

  • Wan L, Zhu W, Zhao L F. 2007. Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda. Environ. Sci., 28(6): 1230–1235. (in Chinese with English abstract)

    Google Scholar 

  • Wang J, Zhao F, Chen B H, Li Y N, Na P, Zhuo J. 2013. Small water clusters stimulate microcystin biosynthesis in cyanobacterial Microcystis aeruginosa. J. Appl. Phycol., 25(1): 329–336.

    Article  Google Scholar 

  • WHO. 2003. Cyanobacterial Toxins: Microcystin-LR in Drinking-Water. In: Background Document for Preparation of WHO Guidelines for Drinking-water Quality. World Health Organization (WHO/SDS/WSH/03. 04/57), Geneva.

    Google Scholar 

  • Wiedner C, Visser P M, Fastner J, Metcalf J S, Codd G A, Mur L R. 2003. Effects of light on the microcystin content of Microcystis strain PC. 7806. Appl. Environ. Microbiol., 69(3): 1475–1481.

    Article  Google Scholar 

  • Wood S A, Rueckert A, Hamilton D P, Cary S C, Dietrich D R. 2011. Swiching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ. Microbiol. Rep., 3(1): 118–124.

    Article  Google Scholar 

  • Wu X D, Kong F X. 2008. The determination of in situ growth rates of the bloomed Microcystis in Meiliang Bay, Lake Taihu. China Environ. Sci., 28(6): 552–555. (in Chinese with English abstract)

    Google Scholar 

  • Yen H K, Lin T F, Tseng I C. 2012. Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant. J. Environ. Monitor., 14(2): 687–696.

    Article  Google Scholar 

  • Zhai C M, Song S, Zou S H, Liu C H, Xue Y R. 2013. The mechanism of competition between two bloom-forming Microcystis species. Freshwater Biology. 58(9): 1831–1839.

    Article  Google Scholar 

  • Zhang P, Zhai C M, Chen R Q, Liu C H, Xue Y R, Jiang J H. 2012. The dynamics of the water bloom-forming Microcystis aeruginosa and its relationship with biotic and abiotic factors in Lake Taihu, China. Ecol. Eng., 47: 274–277.

    Article  Google Scholar 

  • Zhang P, Zhai C M, Wang X X, Liu C H, Jiang J H, Xue Y R. 2013. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J. Appl. Phycol., 25(2): 555–565.

    Article  Google Scholar 

  • Zhang T, Song L R. 2006. Allelopathic effect between Microcystis aeruginosa and three filamentous cyanobacteria. J. Lake Sci., 18(2): 150–156. (in Chinese with English abstract)

    Article  Google Scholar 

  • Zhang X W, Fu J, Song S, Zhang P, Yang X H, Zhang L R, Luo Y, Liu C H, Zhu H L. 2014. Interspecific competition between Microcystis aeruginosa and Anabaena flos -aquae from Taihu Lake, China. Zeitschrift für Naturforschung C. 69(1-2): 53–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yarong Xue  (薛雅蓉) or Changhong Liu  (刘常宏).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31471810, 31272081), the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07101-013-05(02)), and the Jiangsu Key Technology R&D Program (No. BE2012372)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Li, F., Liu, J. et al. The combined effects of Dolichospermum flos-aquae, light, and temperature on microcystin production by Microcystis aeruginosa . Chin. J. Ocean. Limnol. 34, 1173–1182 (2016). https://doi.org/10.1007/s00343-016-5204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5204-0

Keywords

Navigation