Skip to main content
Log in

Late Quaternary sedimentary environmental evolution offshore of the Hangzhou Bay, East China—implications for sea level change and formation of Changjiang alongshore current

  • Geology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This study focuses on sedimentary environmental changes offshore of Hangzhou Bay, East China, since the Late Quaternary. AMS 14C ages from core CJK10, lithologies, distribution of foraminifera, heavy minerals, and S and Cl elements show a fluvial terrace environment during ∼23.2–11.0 cal ka BP; a littoral to tidal-flat environment during 11.0–10.2 cal ka BP; and a shallow marine environment with a relatively low sedimentation rate (0.1–0.22 cm/a) since 4.3 cal ka BP. High depositional rates (∼1.6 cm/a) from 10.9 to 10.2 cal ka BP resulted from sufficient accommodation space created by rapid sea level rise from −44 m to −33 m, from high sediment delivery by local rivers, and effective trapping of sediments by tidal-flat vegetation. The rate of sea level rise was variable; relatively high from 10.9 to 10.6 cal ka BP (2.1 cm/a), and lower since 10.6 cal ka BP (1.2 cm/a). The Changjiang alongshore current crossed the Hangzhou Bay to form the mud wedge on the inner shelf of the East China Sea later than 9.4 cal ka BP. The CJK10 site was a tide-dominated shelf environment and experienced erosion from approximately 9.4-9.2 cal ka BP to 4.3 cal ka BP. The depositional hiatus was caused by the Changjiang alongshore current, which was relatively weak during 9.4-7.5 cal ka BP and increased in strength during ∼7.5-4 cal ka BP. From ∼4.3 cal ka BP, a large amount of sediment from the Changjiang River was partly deposited on the continental shelf of Hangzhou Bay with some transported southward. Therefore, this study clarifies the history of Changjiang-derived sediment dispersal and deposition, although a detailed record of the changes in the Changjiang alongshore current since 4.3 cal ka BP is difficult to obtain because of the scarcity of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard E, Hamelin B, Delanghe-Sabatier D. 2010. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science, 327(5973): 1 235–1 237.

    Article  Google Scholar 

  • Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology, 22(3–4): 285–312.

    Article  Google Scholar 

  • Burbank D W. 1992. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357(6380): 680–683.

    Article  Google Scholar 

  • Chen Z Y, Song B P, Wang Z H, Cai Y L. 2000. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Marine Geology, 162(2–4): 423–441.

    Article  Google Scholar 

  • Chen Z Y, Stanley D J. 1993. Yangtze Delta, eastern China: 2. Late Quaternary subsidence and deformation. Marine Geology, 112(1–4): 13–21.

    Article  Google Scholar 

  • Croudace I W, Rindby A, Rothwell R G. 2006. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG ed. New Techniques in Sediment Core Analysis. Geological Society, London, Special Publications. p.51–63.

    Google Scholar 

  • Dykoski C A, Edwards R L, Cheng H, Yuan D X, Cai Y J, Zhang M L, Lin Y S, Qing J M, An Z S, Revenaugh J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1–2): 71–86.

    Article  Google Scholar 

  • Fairbanks R G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250): 637–642.

    Article  Google Scholar 

  • Haschke M, Scholz W, Theis U, Nicolosi J, Scruggs B, Herzceg L. 2002. Description of a new micro-Xray spectrometer. J. Phys., IV France, 12: 6–83.

    Article  Google Scholar 

  • He S L. 1991. Comparative study on terrigenous miniral component of sediment along nearshore area of the East China Sea. Journal of East China Normal University (Natural Science), (1): 78–86. (in Chinese with English abstract)

    Google Scholar 

  • Hong X Q. 1987. Foraminifera distributions in coastal marsh along the Yellow Sea and the East China Sea and its geology implications. In: Yan Q S ed. Recent Yangtze Delta Deposits. 1st edn. East China Normal University Press, Shanghai, p.306–313. (in Chinese)

    Google Scholar 

  • Hori K, Saito Y, Zhao Q H, Cheng X R, Wang P X, Sato Y, Li C X. 2001a. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology, 41(2–3): 233–248.

    Article  Google Scholar 

  • Hori K, Saito Y, Zhao Q H, Cheng X R, Wang P X, Sato Y, Li C X. 2001b. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177(3–4): 331–351.

    Article  Google Scholar 

  • Hori K, Saito Y, Zhao Q H, Wang P X. 2002a. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sedimentary Geology, 146(3–4): 249–264.

    Article  Google Scholar 

  • Hori K, Saito Y, Zhao Q H, Wang P X. 2002b. Control of incised-valley fill stacking patterns by accelerated and decelerated sea-level rise: the Changjiang example during the last deglaciation. Geo-Marine Letters, 22(3): 127–132.

    Article  Google Scholar 

  • Hori K, Saito Y. 2007. An early Holocene sea-level jump and delta initiation. Geophysical Research Letters, 34(18): L18401, http://dx.doi.org/10.1029/2007GL031029.

    Article  Google Scholar 

  • Hu D X, Yang Z S. 2001. The Key Process of Ocean Flux in the East China Sea. Ocean Press, Beijing, China. p.3–13. (in Chinese)

    Google Scholar 

  • Hua D, Wang Q Z. 1986. Characteristics of foraminiferal fauna in the surficial sediments of tidal flat in north coast of Hangzhou Bay. Donghai Marine Science, 4(3):33–41. (in Chinese with English abstract)

    Google Scholar 

  • Jansen J H F, Van der Gaast S J, Koster B, Vaars A J. 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Marine Geology, 151(1–4): 143–153.

    Article  Google Scholar 

  • Jian Z M, Wang P X, Saito Y, Wang J L, Pflaumann U, Oba T, Chen X R. 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters, 184(1): 305–319.

    Article  Google Scholar 

  • Jin B F, Zhang Y J, Song J. 2007. Characteristics of mineral chemistry and formation of the micro-nodules in the first stiff clay layer in the Yangtze River delta. Marine Geology & Quaternary Geology, 27(3): 9–15. (in Chinese with English abstract)

    Google Scholar 

  • Kong G S, Lee C W. 2005. Marine reservoir corrections (ΔR) for southern coastal waters of Korea. The Sea, Journal of the Korean Society of Oceanography, 10(2): 124–128.

    Google Scholar 

  • Li C X, Chen Q Q, Zhang J Q, Yang S Y, Fan D D. 2000. Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(4): 453–469.

    Article  Google Scholar 

  • Li C X, Wang P, Sun H P, Zhang J Q, Fan D D, Deng B. 2002. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution. Sedimentary Geology, 152(1–2): 133–158.

    Article  Google Scholar 

  • Li P, Chen G. 1995. Early diagenesis of late Pleistocene darkgreen stiff clay in the Yangzi River delta. Oil & Gas Geology, 16(4): 313–319. (in Chinese with English abstract)

    Google Scholar 

  • Liu J P, Milliman J D. 2004. Reconsidering melt-water pulses 1A and 1B: global impacts of rapid sea-level rise. Journal of Ocean University of China, 3(2): 183–190.

    Article  Google Scholar 

  • Liu J P, Xu K H, Li A C, Milliman J D, Velozzi D M, Xiao S B, Yang Z S. 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4): 208–224.

    Article  Google Scholar 

  • Liu J, Saito Y, Kong X H, Wang H, Xiang L H, Wen C, Nakashima R. 2010. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ∼13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quaternary Science Reviews, 29(17–18): 2 424–2 438.

    Article  Google Scholar 

  • Liu Y J, Cao L M, Li Z L, Wang H N, Chu T Q, Zhang J R. 1984. Element Geochemistry. Science Press, Beijing, China. p.458–489. (in Chinese)

    Google Scholar 

  • Lü Q R, Yan S Z. 1981. A study of the heavy mincral groups in the Chang Jiang estuarine region and thier significance. Journal of East China Normal University Natural Science Edition, (1): 73–83. (in Chinese with English abstract)

    Google Scholar 

  • Ma K J. 1989. A feature of the heavy mineral assemblage of the Zhejiang coastal region and the control factors. Donghai Marine Science, 7(2): 33–45. (in Chinese with English abstract)

    Google Scholar 

  • Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5): 525–544.

    Article  Google Scholar 

  • Peltier W R, Fairbanks R G. 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews, 25(23–24): 3 322–3 337.

    Article  Google Scholar 

  • Qin J G, Wu G X, Zheng H B, Zhou Q. 2008. The palynology of the first hard clay layer (late Pleistocene) from the Yangtze delta, China. Review of Palaeobotany and Palynology, 149(1–2): 63–72.

    Article  Google Scholar 

  • Qin Y S, Zhao Y Y, Chen L R, Zhao S L. 1987. Geology of the East China Sea. China Science Press, Beijing. 290p. (in Chinese)

    Google Scholar 

  • Richter T O, van der Gaast S, Koster B, vaars A, Gieles R, de Stigter H C, de Haas H, van Weering T C E. 2006. The Avaatech XRF core scanner: technical description and applications to NE Atlantic sediments. In: Rothwell R G ed. New Techniques in Sediment Core Analysis. 1st edn. Special Publication, Geological Society, London, UK. p.39–50.

    Google Scholar 

  • Rothwell R G. 1989. Minerals and Mineraloids in Marine Sediments: An Optical Identification Guide. Elsevier Science Publisher, New York, USA. p.161–166.

    Book  Google Scholar 

  • Shao X H, Wang Y J, Cheng H, Kong X G, Wu J Y. 2006. Holocene monsoon climate evolution and drought event recorded in the stalagmite from Shengnongjia, Hubei, China. Chinese Science Bulletin, 51(1): 80–86 (in Chinese).

    Article  Google Scholar 

  • Shou W W, Wu J Z, Hu R J, Zhu L H. 2009. 3-D Hydrodynamic Numerical Modelling around the Sea Area of Zhoushan Islands. Marine Geology Letters, 25(11): 1–9. (in Chinese with English abstract)

    Google Scholar 

  • Southon J, Kashgarian M, Fontugne M, Metivier B, Yim W W S. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1): 167–180.

    Google Scholar 

  • Stanley D J, Warne A G. 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265(5169): 228–231.

    Article  Google Scholar 

  • Stuiver M, Reimer P J. 1993. Extended 14C data base and revised CALIB radiocarbon calibration program. Radiocarbon, 35: 215–230.

    Google Scholar 

  • Su J L. 2001. A review of circulation dynamics of the coastal oceans near China. Acta Oceanonlogica Sinica, 23(4): 1–16.

    Google Scholar 

  • Tao J, Chen M T, Xu S Y. 2006. A Holocene environmental record from the southern Yangtze River delta, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3–4): 204–229.

    Article  Google Scholar 

  • Wang K, Zheng H B, Prins M, Zheng Y. 2008a. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf. Marine Geology & Quaternary Geology, 28(4): 1–10. (in Chinese with English abstract)

    Google Scholar 

  • Wang P X, Min Q B, Bian Y H. 1985. Distribution of foraminifera and ostracoda in bottom sediments of the northwestern part of the South Huanghai (Yellow) Sea and its geological significance. In: Wang P X ed. Marine Micropaleontology of China. 1st edn. Springer, New York, USA. p.93–114. (in Chinese)

    Google Scholar 

  • Wang P X, Zhang J J, Zhao Q H, Min Q B, Bian Y H, Zhen L F, Chen X R, Chen R H. 1988. Foraminifera and Ostracoda in Bottom Sediments of the East China Sea. China Ocean Press, Beijing, China. 438p. (in Chinese)

    Google Scholar 

  • Wang P X. 2004. Cenozoic deformation and the history of sealand interactions in Asia. In: Clift P, Kuhnt W, Wang P, Hayes D eds. Geophysical Monograph Series 149, Continent-Ocean Interactions within East Asian Marginal Seas. 1st edn. American Geophysical Union, Washington D C USA. p.1–22.

    Chapter  Google Scholar 

  • Wang X, Shi X F, Wang G Q, Qiao S Q, Liu T. 2013. Sedimentation rates and its indication to distribution of Yangtze sediment supply around the Yangtze (Changjiang) River Estuary and its adjacent area, China. Earth Science-Journal of China University of Geosciences, 38(4): 763–775. (in Chinese with English abstract)

    Google Scholar 

  • Wang Y Z. 1995. On geologic tectonic background in Zhoushan archipelago area. South China Journal of Seismology, 15(1): 5–61. (in Chinese with English abstract)

    Google Scholar 

  • Wang Z H, Liu J P, Zhao B C. 2008b. Holocene depocenter shift in the middle-lower Changjiang River basins and coastal area in response to sea level change. Front Earth Sci., 2(1): 17–26.

    Article  Google Scholar 

  • Wang Z H, Xu H, Zhan Q, Saito Y, He Z F, Xie J L, Li X, Dong Y H. 2010. Lithological and palynological evidence of late Quaternary depositional environments in the subaqueous Yangtze delta, China. Quaternary Research, 73(3): 550–562.

    Article  Google Scholar 

  • Xu F J, Li A C, Xiao S B, Wan S M, Liu J G, Zhang Y C. 2009. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation. Acta Sedimentologica Sinica, 27(1): 118–127. (in Chinese with English abstract)

    Google Scholar 

  • Xu K H, Li A C, Liu J P, Milliman J D, Yang Z S, Liu C S, Kao S J, Wan S M, Xu F J. 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system. Marine Geology, 291–294: 176–191.

    Article  Google Scholar 

  • Yang H R, Xie Z R. 1984. Sea-level changes along the east coast of China over the last 20,000 years. Oceanologia et Limnologia Sinica, 15(1): 1–13. (in Chinese with English abstract)

    Google Scholar 

  • Yang S Y, Li C X, Liu S G. 2001. Chemical fluxes of Asian rivers into oceans and their controlling factors. Marine Science Bulletin, 3(2): 30–37.

    Google Scholar 

  • Yi S, Saito Y, Yang D Y. 2006. Palynological evidence for Holocene environmental change in the Changjiang (Yangtze River) delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 103–117.

    Article  Google Scholar 

  • Yun C X. 2010. Diagram of the Evolution of the Yangtze Delta. Ocean Press, Beijing, China. p.213–216. (in Chinese)

    Google Scholar 

  • Zhao Q H, Jian Z M, Zhang Z X, Cheng X R, Wang K, Zheng H B. 2009. Holocene paleoenvironmental changes of the inner-shelf mud area of the East China Sea: evidence from foraminiferal faunas. Marine Geology & Quaternary Geology, 29(2): 75–82. (in Chinese with English abstract)

    Google Scholar 

  • Zheng Y, Kissel C, Zheng H B, Laj C, Wang K. 2010. Sedimentation on the inner shelf of the East China Sea: magnetic properties, diagenesis and paleoclimate implications. Marine Geology, 268(1–4): 34–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefa Shi  (石学法).

Additional information

Supported by the National Special Research Fund for Non-Profit Marine Sector (No. 200805063), the Continental Shelf Drilling Program (No.GZH201100202), and the State Key Laboratory of Marine Geology and Environment, Institute of Oceanology Program (No. MGE2012KG09)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shi, X., Wang, G. et al. Late Quaternary sedimentary environmental evolution offshore of the Hangzhou Bay, East China—implications for sea level change and formation of Changjiang alongshore current. Chin. J. Ocean. Limnol. 33, 748–763 (2015). https://doi.org/10.1007/s00343-015-4172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4172-0

Keyword

Navigation