Skip to main content
Log in

Reconsidering melt-water pulses 1A and 1B: Global impacts of rapid sea-level rise

  • Research Papers
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96–76m, 14.3–14.0ka cal BP) and IB (58–45m, 11.5–11.2ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon (14C) plateau, but their vertical clustering corresponds closely with MWP-1A and IB depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Bølling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a−1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dry as global cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bard, E., B. Hamelin, and R.G. Fairbanks, 1990. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130 000 years. Nature, 346: 456–458.

    Article  Google Scholar 

  • Bard, E., M. Arnold, M. Mangerud, M. Paterne, L. Labeyrie, et al., 1994. The North Atlantic atmospheresea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Leters, 126: 275–287.

    Article  Google Scholar 

  • Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, et al, 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382: 241–244.

    Article  Google Scholar 

  • Bard, E., G. Cabioch, M. Arnold, B. Hamelin, and N. Tisnerat-Laborde, 1998. Radiocarbon calibration by means of mass spectrometric 230TH/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon, 40: 1085–1092.

    Google Scholar 

  • Broecker, W.S., J.P. Kennett, B.P. Flower, J.T. Teller, S. Trumboe, et al, 1989. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature, 341: 318–321.

    Article  Google Scholar 

  • Burr, G.S., R.L. Edwards, G. Cabioch, T. Correge, D. J. Donahue, et al., 1998. A high-resolution radiocarbon calibration between 11 700 and 12 400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon, 40: 1093–1105.

    Google Scholar 

  • Chappell, J., and H. Polach, 1991. Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature, 349: 147–149.

    Article  Google Scholar 

  • Clark, P.U., S.J. Johnsen, W. Huaxiao, R.B. Alley, L. D. Keigwin, et al, 1996. Origin of the first global meltwater pulse following the Last Glacial Maximum. Paleoceanography, 11: 563–577.

    Article  Google Scholar 

  • Clark, P. U., J. X. Mitrovica, G. A. Milne, and M. E. Tamisiea, 2002. Sea-level fingerprinting as a direct test for the source of global meltwater pulse IA. Science, 295: 2438–2441.

    Google Scholar 

  • Dansgaard, W., J.W.C. White, and S.J. Johnsen, 1989. The abrupt termination of the Younger Dryas climate event. Nature, 339: 532–534.

    Article  Google Scholar 

  • Edwards, R. L., J.W. Beck, G.S. Burr, D.J. Donahue, J. M. A. Chappell, et al., 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science, 260: 962–968.

    Article  Google Scholar 

  • Fairbanks, R. G., 1989. A 17000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637–642.

    Article  Google Scholar 

  • Ganopolski, A., and S. Rahmstorf, 2001. Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409: 153–158.

    Article  Google Scholar 

  • Guilderson, T. P., L. Burckle, S. Hemming, and W. R. Peltier, 2000. Late pleistocene sea level variations derived from the Argentine Shelf. Geochemistry, Geophysics, Geosystems, 1: 2000GC000098.

  • Hanebuth, T., K. Stattegger, and P. M. Grootes, 2000. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science, 288: 1033–1035.

    Article  Google Scholar 

  • Hori, K., Y. Saito, Q. Zhao, X.R. Xheng, P.X. Wang, et al, 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177: 331–351.

    Article  Google Scholar 

  • Hughen, K.A., J. Southon, L.C. Peterson, R. Alley, D. M. Sigman, et al, 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 391: 65–68.

    Article  Google Scholar 

  • Hughen, K. A., J. R. Southon, S. J. Lehman, and J. T. Overpeck, 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science, 290: 1951–1954.

    Article  Google Scholar 

  • Keigwin, L. D., G. A. Jones, S. J. Lehman, and E. A. Boyle, 1991. Deglacial meltwater discharge, North Atlantic deep circulation, and abrupt climate change. Journal of Geophysical Research, 96: 16811–816826.

    Article  Google Scholar 

  • Keigwin, L.D., and M-A. Schlegel, 2002. Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic. Geochemistry, Geophysics Geosystems, 3: 1029/2001GC000283.

    Google Scholar 

  • Kienast, M., T. J. J. Hanebuth, C. Pelejero, and S. Steinke, 2003. Synchroneity of meltwater pulse 1A and the Bølling warming: New evidence from the Bølling South China Sea. Geology, 31: 67–70.

    Article  Google Scholar 

  • Kim, J. M., and M. Kucera, 2000. Benthic foraminifer record of environmental changes in the Yellow Sea (Huanghe) during the last 15 000 years. Quaternary Science Reviews, 19: 1067–1085.

    Article  Google Scholar 

  • Kitagawa, H., and J. van der Plicht, 1998. Atmospheric radiocarbon calibration to 45 000 yr B.P.: Late glacial fluctuations and cosmogenic isotope production. Science, 279: 1187–1190.

    Article  Google Scholar 

  • Lai, D., and B. Peters, 1962. In Progress in Elementary Particle and Cosmic Ray Physics. J. G. Wilson, and S. A. Wouthusen, Eds., North-Holland, Amsterdam, 1–74.

    Google Scholar 

  • Lambeck, K., Y. Yokoyama, A. Purcell, and P. Johnston, 2002. Reply to the comment by W. R. Peltier. Quaternary Science Reviews, 21: 415–418.

    Article  Google Scholar 

  • Lighty, R.G., I.G. Macintyre, and R. Stuckenrath, 1982. Acropora Palmata reef framework: a reliable indicator of sea level in the Western Atlantic for the past 10 000 years. Coral Reefs, 1: 125–130.

    Article  Google Scholar 

  • Liu, M.H., Wu, S.Y., and Wang, Y.J., 1987. Late Quaternary Sediments of the Yellow Sea. China Ocean Press, Beijing, 433 pp.

    Google Scholar 

  • Liu, J., Li, S.Q., Wang, S.J., Yang, Z.G., and Ge, Z. S., 1997. A rock-magnetic study of the last deglacial to Holocene sedimentary sequence in the YSDP105 core in the northeast shelf of the South Yellow Sea. Marine Geology and Quaternary Geology, 17(4): 13–24.

    Google Scholar 

  • Liu, J.P., 2001. Post-glacial Sedimentation in a River-dominated Epicontinental Shelf: The Yellow Sea Example. Ph.D. Dissertation. The College of William and Mary, USA.

    Google Scholar 

  • Liu, J.P., J.D. Milliman, S. Gao, and P. Cheng, 2004. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 209(1–4): 45–67.

    Article  Google Scholar 

  • Johnsen, S. J., C. U. Hammer, U. Andersen, K. K. Andersen, C.S. Hvidberg, et al., 1997. The 18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research, 102: 26397–26410.

    Article  Google Scholar 

  • Monnin, E., B. Stauffer, T. F. Stacker, D. Raynaud, J. M. Barnola, et al., 2001. Atmospheric CO2 concentrations over the last glacial termination. Science, 291: 112–114.

    Article  Google Scholar 

  • Muscheler, R., J. Beer, G. Wagner, and R. C. Finkel, 2000. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature, 408: 567–570.

    Article  Google Scholar 

  • Neumann, A.C., and I.G. Macintyre, 1985. Reef response to sea level rise: keep up, catch up or give up. Proc. 5th International Coral Reef Congress, Tahiti.

  • Peltier, W. R., 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Reviews of Geophysics, 36: 603–689.

    Article  Google Scholar 

  • Peltier, W.R., 2002. Comments on the paper of Yokoyama et al. (2000), entitled ‘Timing of the Last Glacial Maximum from observed sea level minima’. Quaternary Science Reviews, 21: 409–414.

    Article  Google Scholar 

  • Peltier, W. R., and R. Drummond, 2002. A ‘broad-shelf effect’ upon postglacial relative sea level history. Geophysical Research Letters, 29: 10–14.

    Article  Google Scholar 

  • Severinghaus, J.P., and E.J. Brook, 1999. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286: 930–934.

    Article  Google Scholar 

  • Smith, H.J., B. Deck, H. Fischer, M. Wahlen, and D. Mastroianni, 1999. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature, 400: 248–250.

    Article  Google Scholar 

  • Southon, J., 2002. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0-14500 yr B.P. Quaternary Research, 57: 32–37.

    Article  Google Scholar 

  • Steig, E.J., P.M. Grootes, P.A. Mayewski, M.S. Twickler, S.I. Whitlows, et al., 2000. Wisonsinan and Holocence climate history from an ice core at Taylor Dome, western Ross embayment, Antarctica. Geografiska Annaler, Series A:. Physical Geography, 82: 213–232.

    Article  Google Scholar 

  • Suk, B.C., T. Nakamura, N. Nakai, and A. Taira, 1990. Radio-carbon age determination by Tandem Accelerator Mass Spectrometry Technique and its application to the Korean sea. The Korean Journal of Quaternary Research, 4(1): 27–40.

    Google Scholar 

  • Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica, 2003. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerod Warm interval. Science, 299: 1709–1713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J.P., Milliman, J.D. Reconsidering melt-water pulses 1A and 1B: Global impacts of rapid sea-level rise. J Ocean Univ. China 3, 183–190 (2004). https://doi.org/10.1007/s11802-004-0033-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-004-0033-8

Key words

Navigation