Skip to main content
Log in

Pyropia yezoensis can utilize CO2 in the air during moderate dehydration

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Pyropia yezoensis, an intertidal seaweed, experiences regular dehydration and rehydration with the tides. In this study, the responses of P. yezoensis to dehydration and rehydration under high and low CO2 concentrations ((600–700)×10−6 and (40−80)×10−6, named Group I and Group II respectively) were investigated. The thalli of Group I had a significantly higher effective photosystem II quantum yield than the thalli of Group II at 71% absolute water content (AWC). There was little difference between thalli morphology, total Rubisco activity and total protein content at 100% and 71% AWC, which might be the basis for the normal performance of photosynthesis during moderate dehydration. A higher effective photosystem I quantum yield was observed in the thalli subjected to a low CO2 concentration during moderate dehydration, which might be caused by the enhancement of cyclic electron flow. These results suggested that P. yezoensis can directly utilize CO2 in ambient air during moderate dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J B, Bate G C. 1994. The tolerance to desiccation of the submerged macrophytes Ruppia cirrhosa (Petagna) grande and Zostera capensis setchell. J. Exp. Mar. Biol. Ecol., 183: 53–62.

    Article  Google Scholar 

  • Assmann S M, Snyder J A, Lee Y R J. 2001. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ., 23: 387–395.

    Article  Google Scholar 

  • Bjork M, Uku J, Weil A, Beer S. 1999. Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser., 191: 121–126.

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  Google Scholar 

  • Bukhov N, Carpentier R. 2004. Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth. Res., 82: 17–33.

    Article  Google Scholar 

  • Davison I R, Pearson G A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol., 32: 197–211.

    Article  Google Scholar 

  • Gao K S, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. Appl. Phycol., 3: 355–362.

    Article  Google Scholar 

  • Gao K S, Aruga Y. 1987. Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed conditions. J. Tokyo Univ. Fish., 47: 51–65.

    Google Scholar 

  • Gao K S, Ji Y, Aruga Y. 1999. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia, 398–399: 355–359.

    Article  Google Scholar 

  • Gao S, Wang G C. 2012. The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). J. Exp. Bot., http://dx.doi.org/10.1093/jxb/ers082.

    Google Scholar 

  • Gerard V A, Driscoll T. 1996. A spectrophotometric assay for Rubisco activity: application to the kelp Laminaria saccharina and implications for radiometric assays. J. Phycol., 32: 880–884.

    Article  Google Scholar 

  • Hodgson L M. 1981. Photosynthesis of the red alga Gastroclonium coulteri (Rhodophyta) in response to changes in temperature, light intensity, and desiccation. J. Phycol., 17: 37–42.

    Article  Google Scholar 

  • Johnston A M, Raven J A. 1986. The analysis of photosynthesis in air and water of Ascophyllum nodosum (L.) Le Jol. Oecologia, 69: 288–295.

    Article  Google Scholar 

  • Kawamitsu Y, Driscoll T, Boyer J S. 2000. Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiol., 41: 344–353.

    Article  Google Scholar 

  • Kramer D M, Johnson G, Kiirats O, Edwards G E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res., 79(2): 209–218.

    Article  Google Scholar 

  • Larsson C, Axelsson L. 1999. Bicarbonate uptake and utilization in marine macroalgae. Eur. J. Phycol., 34: 79–86.

    Article  Google Scholar 

  • Leuschner C, Landwehr S, Mehlig U. 1998. Limitation of carbon assimilation of intertidal Zostera noltii and Z. marina by desiccation at low tide. Aquat. Bot., 62: 171–176.

    Article  Google Scholar 

  • Lignell A, Pedersén M. 1989. Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. Br. Phycol. J., 24: 83–89.

    Article  Google Scholar 

  • Lin A P, Wang G C, Yang F, Pan G H. 2009. Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. Planta, 229: 803–810.

    Article  Google Scholar 

  • Lipkin Y, Beer S, Eshel A. 1993. The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot. Mar., 36: 517–523.

    Article  Google Scholar 

  • Ma J H, Cai S Q. 1996. The Cultivation and Processing of Porphyra yezoensis Ueda. Science Press, Beijing, China. p.12–182. (in Chinese)

    Google Scholar 

  • Maberly S C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol., 26: 439–449.

    Article  Google Scholar 

  • Madsen T V, Maberly S C. 1990. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. Phycol., 26: 24–30.

    Article  Google Scholar 

  • Mercado J, Javier F, Gordillo L, Xavier Niell F, Figueroa F. 1999. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J. Appl. Phycol., 11: 455–461.

    Article  Google Scholar 

  • Mott K A, Parkhurst D F. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ., 14: 509–515.

    Article  Google Scholar 

  • Pérez-Lloréns J L, Niell F X. 1993. Temperature and emergence effects on the net photosynthesis of two Zostera noltii Hornem. morphotypes. Hydrobiologia, 254: 53–64.

    Article  Google Scholar 

  • Quadir A, Harrison P J, Dewreede R E. 1979. Effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia, 18: 83–88.

    Article  Google Scholar 

  • Sampath-Wiley P, Neefus C D, Jahnke L S. 2008. Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis kutzing (Rhodophyta, Bangiales). J. Exp. Mar. Biol. Ecol., 361: 83–91.

    Article  Google Scholar 

  • Schreiber U. 2004. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: George C P ed. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht. p.279–319.

    Chapter  Google Scholar 

  • Seddon S, Cheshire A C. 2001. Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 220: 119–130.

    Article  Google Scholar 

  • Zou D H, Gao K S. 2002. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur. J. Phycol., 37: 587–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang  (王广策).

Additional information

Supported by the Science and Technology Strategic Pilot Program of Chinese Academy of Sciences (No. XDA11020404), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA100806), the Tianjin Natural Science Foundation (No. 12JCZDJC22200), and the Project for Developing Marine Economy by Science and Technology in Tianjin (No. KX2010-0005)

ZHOU Wei, HE Linwen, and YANG Fang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., He, L., Yang, F. et al. Pyropia yezoensis can utilize CO2 in the air during moderate dehydration. Chin. J. Ocean. Limnol. 32, 358–364 (2014). https://doi.org/10.1007/s00343-014-3093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3093-7

Keyword

Navigation