Skip to main content

Advertisement

Log in

Genome-wide survey and analysis of microsatellites in the Pacific oyster genome: abundance, distribution, and potential for marker development

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatellites across the entire genome in oysters, despite their importance to the aquaculture industry. We present the first genome-wide investigation of microsatellites in the Pacific oyster Crassostrea gigas by analysis of the complete genome, resequencing, and expression data. The Pacific oyster genome is rich in microsatellites. A total of 604 653 repeats were identified, in average of one locus per 815 base pairs (bp). A total of 12 836 genes had coding repeats, and 7 332 were expressed normally, including genes with a wide range of molecular functions. Compared with 20 different species of animals, microsatellites in the oyster genome typically exhibited 1) an intermediate overall frequency; 2) relatively uniform contents of (A)n and (C)n repeats and abundant long (C)n repeats (≥24 bp); 3) large average length of (AG)n repeats; and 4) scarcity of trinucleotide repeats. The microsatellite-flanking regions exhibited a high degree of polymorphism with a heterozygosity rate of around 2.0%, but there was no correlation between heterozygosity and microsatellite abundance. A total of 19 462 polymorphic microsatellites were discovered, and dinucleotide repeats were the most active, with over 26% of loci found to harbor allelic variations. In all, 7 451 loci with high potential for marker development were identified. Better knowledge of the microsatellites in the oyster genome will provide information for the future design of a wide range of molecular markers and contribute to further advancements in the field of oyster genetics, particularly for molecular-based selection and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 27(2): 573–580.

    Article  Google Scholar 

  • Boudry P, Collet B, Cornette F, Hervouet V, Bonhomme F. 2002. High variance in reproductive success of the Pacific oyster (Crassostrea giga s, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture, 204(3–4): 283–296.

    Article  Google Scholar 

  • Brandstrom M, Ellegren H. 2008. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res., 18(6): 881–887.

    Article  Google Scholar 

  • Brownlow R J, Dawson D A, Horsburgh G J, Bell J J, Fish J D. 2008. A method for genotype validation and primer assessment in heterozygote-deficient species, as demonstrated in the prosobranch mollusc Hydrobia ulvae. BMC Genetics, 9(1): 55.

    Article  Google Scholar 

  • Chambers G K, MacAvoy E S. 2000. Microsatellites: consensus and controversy. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 126(4): 455–476.

    Article  Google Scholar 

  • Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L. 2010. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS One, 5(12): e15633.

    Article  Google Scholar 

  • Clisson I, Lathuilliere M, Crouau-Roy B. 2000. Conservation and evolution of microsatellite loci in primate taxa. Am. J. Primatol., 50(3): 205–214.

    Article  Google Scholar 

  • Dakin E E, Avise J C. 2004. Microsatellite null alleles in parentage analysis. Heredity, 93(5): 504–509.

    Article  Google Scholar 

  • Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet., 5(6): 435–445.

    Article  Google Scholar 

  • Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Tanguy A, Moraga D, Fabioux C, Lindeque P, Shaw J, Reinhardt R, Prunet P, Davey G, Lapegue S, Sauvage C, Corporeau C, Moal J, Gavory F, Wincker P, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P. 2009. Generation and analysis of a 29,745 unique expressed sequence tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase. BMC Genomics, 10(1): 341.

    Article  Google Scholar 

  • Grizel H, Heral M. 1991. Introduction into France of the Japanese Oyster (Crassostrea gigas). J. Conseil., 47(3): 399–403.

    Article  Google Scholar 

  • Guo X, Li Q, Wang Q Z, Kong L F. 2012. Genetic mapping and QTL analysis of growth-related traits in the Pacific Oyster. Mar. Biotechnol., 14(2): 218–226.

    Article  Google Scholar 

  • Hancock J M. 1996. Simple sequences in a ‘minimal’ genome. Nat. Genet., 14(1): 14–15.

    Article  Google Scholar 

  • Hedgecock D, Gaffney P M, Goulletquer P, Guo X M, Reece K, Warr G W. 2005. The case for sequencing the Pacific oyster genome. J. Shellfish Res., 24(2): 429–441.

    Google Scholar 

  • Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V. 2004. Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J. Shellfish Res., 23(2): 379–385.

    Google Scholar 

  • Hubert S, Hedgecock D. 2004. Linkage maps of microsatellite DNA markers for the pacific oyster Crassostrea gigas. Genetics, 168(1): 351–362.

    Article  Google Scholar 

  • Huvet A, Boudry P, Ohresser M, Delsert C, Bonhomme F. 2000. Variable microsatellites in the Pacific Oyster Crassostrea gigas and other cupped oyster species. Anim. Genet., 31(1): 71–72.

    Article  Google Scholar 

  • Katti M V, Ranjekar P K, Gupta V S. 2001. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol., 18(7): 1 161–1 167.

    Article  Google Scholar 

  • La Rota M, Kantety R V, Yu J K, Sorrells M E. 2005. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics, 6(1): 23.

    Article  Google Scholar 

  • Lavoie R E. 2005. Oyster Culture in North America: History, Present and Future. The 1st International Oyster Symposium Proceedings, Oyster Research Institute News. 17: 14–21.

    Google Scholar 

  • Leclercq S, Rivals E, Jarne P. 2007. Detecting microsatellites within genomes: significant variation among algorithms. BMC Bioinformatics, 8(1): 125.

    Article  Google Scholar 

  • Levinson G, Gutman G A. 1987. Slipped-strand mispairing-a major mechanism for DNA-sequence evolution. Mol. Biol. Evol., 4(3): 203–221.

    Google Scholar 

  • Li G, Hubert S, Bucklin K, Ribes V, Hedgecock D. 2003. Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol. Ecol. Notes, 3(2): 228–232.

    Article  Google Scholar 

  • Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1 754–1 760.

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2 078–2 079.

    Article  Google Scholar 

  • Li L, Guo X M. 2004. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Mar. Biotechnol., 6(1): 26–36.

    Article  Google Scholar 

  • Li Q, Kijima A. 2006. Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas. J. Exp. Mar. Biol. Ecol., 331(1): 1–8.

    Article  Google Scholar 

  • Li Y C, Korol A B, Fahima T, Nevo E. 2004. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol., 21(6): 991–1 007.

    Article  Google Scholar 

  • Liu Z J, Cordes J F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1–4): 1–37.

    Article  Google Scholar 

  • Malham S K, Cotter E, O’Keeffe S, Lynch S, CUlloty S C, King J W, Latchford J W, Beaumont A R. 2009. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea: the influence of temperature and nutrients on health and survival. Aquaculture, 287(1–2): 128–138.

    Article  Google Scholar 

  • Meglecz E, Anderson S J, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, Coeur d’Acier A, Dawson D A, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Petenian F, Silvain J F, Wilcock H R. 2007. Microsatellite flanking region similarities among different loci within insect species. Insect. Mol. Biol., 16(2): 175–185.

    Article  Google Scholar 

  • Merkel A, Gemmell N J. 2008. Detecting microsatellites in genome data: variance in definitions and bioinformatics approaches cause systematic bias. Evol. Bioinform., 4: 1–6.

    Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7): 621–628.

    Article  Google Scholar 

  • Oliveira E J, Padua J G, Zucchi M I, Vencovsky R, Vieira M L C. 2006. Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol., 29(2): 294–307.

    Article  Google Scholar 

  • Quilang J, Wang S, Li P, Abernathy J, Peatman E, Wang Y, Wang L, Shi Y, Wallace R, Guo X, Liu Z. 2007. Generation and analysis of ESTs from the eastern oyster, Crassostrea virginica Gmelin and identification of microsatellite and SNP markers. BMC Genomics, 8: 157.

    Article  Google Scholar 

  • Rozen S, Skaletsky H. 2000. Primer3 on the www for general users and for biologist programmers. Methods in Molecular Biology, 132: 365–386.

    Google Scholar 

  • Santos J, Serra L, Sole E, Pascual M. 2010. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Res., 18( 2): 213–226.

    Article  Google Scholar 

  • Sauvage C, Boudry P, de Koning D J, Haley C S, Heurtebise S, Lapegue S. 2010. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas). Anim. Genet., 41(4): 390–399.

    Google Scholar 

  • Sauvage C, Boudry P, Lapegue S. 2009. Identification and characterization of 18 novel polymorphic microsatellite makers derived from expressed sequence tags in the Pacific oyster Crassostrea gigas. Mol. Ecol. Resour., 9(3): 853–855.

    Article  Google Scholar 

  • Schlotterer C, Tautz D. 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Res., 20(2): 211–215.

    Article  Google Scholar 

  • Schlotterer C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma, 109(6): 365–371.

    Article  Google Scholar 

  • Schlotterer C. 2004. The evolution of molecular markers-just a matter of fashion? Na t. Rev. Genet., 5(1): 63–69.

    Article  Google Scholar 

  • Schmidt A, Wehrmann A, Dittmann S. 2008. Population dynamics of the invasive Pacific oyster Crassostrea gigas during the early stages of an outbreak in the Wadden Sea (Germany). Helgol. Mar. Res., 62(4): 367–376.

    Article  Google Scholar 

  • Schug M D, Hutter C M, Wetterstrand K A, Gaudette M S, Mackay T F C, Aquadro C F. 1998. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol. Biol. Evol., 15(12): 1 751–1 760.

    Article  Google Scholar 

  • Sekino M, Hamaguchi M, Aranishi F, Okoshi K. 2003. Development of novel microsatellite DNA markers from the Pacific oyster Crassostrea gigas. Mar. Biotechnol., 5(3): 227–233.

    Article  Google Scholar 

  • Sharma P C, Grover A, Kahl G. 2007. Mining microsatellites in eukaryotic genomes. Trends Biotechnol. I, 25(11): 490–498.

    Article  Google Scholar 

  • Soletchnik P, Ropert M, Mazurie J, Fleury P G, Le Coz F. 2007. Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture, 271(1–4): 384–400.

    Article  Google Scholar 

  • Subramanian S, Mishra R K, Singh L. 2003. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol., 4(2): R13.

    Article  Google Scholar 

  • Tian X J, Strassmann J E, Queller D C. 2011. Genome Nucleotide composition shapes variation in simple sequence repeats. Mol. Biol. Evol., 28(2): 899–909.

    Article  Google Scholar 

  • Toth G, Gaspari Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res., 10(7): 967–981.

    Article  Google Scholar 

  • Ward R D, English L J, McGoldrick D J, Maguire G B, Nell J A, Thompson P A. 2000. Genetic improvement of the Pacific oyster Crassostrea gigas (Thunberg) in Australia. Aquac. Res., 31(1): 35–44.

    Article  Google Scholar 

  • Weber J L. 1990. Informativeness of human (Dc-Da)N.(Dg-Dt)N polymorphisms. Genomics, 7(4): 524–530.

    Article  Google Scholar 

  • Wrange A L, Valero J, Harkestad L S, Strand O, Lindegarth S, Christensen H T, Dolmer P, Kristensen P S, Mortensen S. 2010. Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia. Biol. Invasions, 12(6): 1 453–1 458.

    Article  Google Scholar 

  • Yu H, Li Q. 2007. EST-SSR markers from the Pacific oyster, Crassostrea gigas. Mol. Ecol. Notes, 7(5): 860–862.

    Article  Google Scholar 

  • Yu H, Li Q. 2008. Exploiting EST databases for the development and characterization of EST-SSRs in the pacific oyster (Crassostrea gigas). Journal of Heredity, 99(2): 208–214.

    Article  Google Scholar 

  • Yu Z N, Wang Y H, Fu D K. 2010. Development of Fifty-one novel EST-SSR loci in the Pacific oyster, Crassostrea gigas by data mining from the public EST database. Conserv. Genet. Resour., 2: 13–18.

    Article  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang Q, Steinberg CE, Wang H, Qian L, Liu X, Yin Y. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418): 49–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haigang Qi  (亓海刚) or Guofan Zhang  (张国范).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2010CB126402), the National Natural Science Foundation of China (Nos. 41206149, 40730845), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA10A405), the Mollusc Research and Development Center, CARS, the Taishan Scholar Program of Shandong Province, and the Taishan Scholars Climbing Program of Shandong Province of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Qi, H., Li, L. et al. Genome-wide survey and analysis of microsatellites in the Pacific oyster genome: abundance, distribution, and potential for marker development. Chin. J. Ocean. Limnol. 32, 8–21 (2014). https://doi.org/10.1007/s00343-014-3064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3064-z

Keyword

Navigation