Skip to main content
Log in

Molecular cloning and expression of a heat-shock cognate 70 (hsc70) gene from swordtail fish (Xiphophorus helleri)

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Heat shock proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In the present study, a full-length cDNA, encoding the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), was isolated from swordtail fish (Xiphophorus helleri) and designated as XheHsc70. The Xhehsc70 cDNA was 2 104 bp long with an open reading frame of 1 941 bp, and it encoded a protein of 646 amino acids with a theoretical molecular weight of 70.77 kDa and an isoelectric point of 5.04. The deduced amino acid sequence shared 94.1%-98.6% identities with the Hsc70s from a number of other fish species. Tissue distribution results show that the Xhehsc70 mRNA was expressed in brain, heart, head kidney, kidney, spleen, liver, muscle, gill, and peripheral blood. After immunization with formalin-killed Vibrio alginolyticus cells there was a significant increase in the Xhehsc70 mRNA transcriptional level in the head kidney of the vaccinated fish compared with in the control at 6, 12, 24, and 48 h as shown by quantitative real time RT-PCR. Based on an analysis of the amino acid sequence of XheHsc70, its phylogeny, and Xhehsc70 mRNA expression, XheHsc70 was identified as a member of the cytoplasmic Hsc70 (constitutive) subfamily of the Hsp70 family of heat shock proteins, suggesting that it may play a role in the immune response. The Xhehsc70 cDNA sequence reported in this study was submitted to GenBank under the accession number JF739182.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman P A, Iwama G K. 2001. Physiological and cellular stress responses of juvenile rainbow trout to vibriosis. J. Aquat. Anim. Health, 13(2): 173–180.

    Article  Google Scholar 

  • Arai A, Naruse K, Mitani H, Shima A. 1995. Cloning and characterization of cDNA for 70-kDa heat-shock protein (Hsp70) from two fish species of genus Oryzias. J. Genet., 70(3): 423–433.

    Google Scholar 

  • Asea A, Kraeft S K, Kurt-Jones E A, Stevenson M A, Chen L B, Finbery R W. 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med., 6(4): 435–442.

    Article  Google Scholar 

  • Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D. 2003. Molecualr identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones, 8(1): 76–85.

    Article  Google Scholar 

  • Currie S, Moyes C D, Tufts B L. 2000. The effects of heat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J. Fish. Biol., 56(2): 398–408.

    Article  Google Scholar 

  • Dang W, Hu Y H, Zhang M, Sun L. 2010. Identification and molecular analysis of a stress-inducible Hsp70 from Sciaenops ocellatus. Fish & Shellfish Immunology, 29(4): 600–607.

    Article  Google Scholar 

  • Deane E E, Woo N Y S. 2005. Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochem. Biophys. Res. Commun., 330(3): 776–783.

    Article  Google Scholar 

  • Du X W, Yu B, Li Y, Chang O Q, Wu S Q, Shi C B. 2004. Observation on dynamic pathological changes of Xiphophorus helleri infected with Aeromonas hydrophila. Chinese Journal of Veterinary Science and Technology, 34(10): 22–25. (in Chinese with English abstract)

    Google Scholar 

  • Fangue N A, Hofmeister M, Schulte P M. 2006. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Journal of Experimental Biology, 209: 2 859–2 872.

    Article  Google Scholar 

  • Fink A L. 1999. Chaperone-mediated protein folding. Physiol. Rev., 79(2): 425–449.

    Google Scholar 

  • Forsyth R B, Candido E P M, Babich S L, Iwama G K. 1997. Stress protein expression in coho salmon with bacterial kidney disease. J. Aquat. Anim. Health, 9(1): 18–25.

    Article  Google Scholar 

  • Franzellitti S, Fabbri E. 2005. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem. Biophys. Res. Commun., 336(4): 157–163.

    Article  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G. 2004. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J. Immunol., 172(2): 972–980.

    Google Scholar 

  • Georgopoulos C, Welch W J. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell. Biol., 9: 601–634.

    Article  Google Scholar 

  • Graser R, Malner-Dragojevic D, Vincek V. 1996. Cloning and characterization of a 70 kD heat shock protein cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica, 98(3): 273–276.

    Article  Google Scholar 

  • Grosvik B E, Goksoyr A. 1996. Biomarker protein expression in primary cultures of salmon (Salmo salar L) hepatocytes exposed to environmental pollutants. Biomarkers, 1(1): 45–53.

    Article  Google Scholar 

  • Han J G, Fu X Z, Shi C B, Pan H J, Wu S Q. 2007. Cloning and expression of IgM in tissues of immunized Xiphophorus helleri. Journal of Guangdong Ocean University, 27(6): 1–6. (in Chinese with English abstract)

    Google Scholar 

  • Hartl F U, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295: 1 852–1 858.

    Article  Google Scholar 

  • Jia A R, Wang C J, Zhang X H. 2010. Clonging and expression analysis of a HSC70 gene from turbot. Acta Hydrobiologica Sinica, 34(3): 547–553. (in Chinese with English abstract)

    Article  Google Scholar 

  • Kiang J G, Tsokos G C. 1998. Heat shock protein 70 kDa: molecular biology, biochemistry and physiology. Pharmacol. Ther., 80(2): 183–201.

    Article  Google Scholar 

  • Kodiha M, Chu A, Lazrak O, Stochaj U. 2005. Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70. Am. J. Physiol. Cell Physiol., 289(4): 1 034–1 041.

    Article  Google Scholar 

  • Kregel K C. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermo tolerance. J. Appl. Physiol., 92(5): 2 177–2 186.

    Google Scholar 

  • Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform., 5: 150–163.

    Article  Google Scholar 

  • Lindquist S, Craig E A.1998. The heat-shock proteins. Annu. Rev. Genet., 22: 631–677.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25 (4): 402–408

    Article  Google Scholar 

  • Mayer M P, Brehmer D, Gässler C S, Bukau B. 2001. Hsp70 chaperone machines. Adv. Protein Chem., 59(1): 1–44.

    Article  Google Scholar 

  • Ming J H, Xie J, Xu P, Liu W B, Ge X P, Liu B. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish & Shellfish Immunology, 28(3): 407–418.

    Article  Google Scholar 

  • Morimoto R I, Kroeger P E, Cotto J J. 1996. The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. EXS., 77: 139–163.

    Google Scholar 

  • Pan H J, Wu S Q, Li K B, Huang Z B, Shi C B. 2000. Application of Xiphophorus helleri to detection of virulence of fish pathogenic bacteria. Journal of Fisheries of China, 24(5): 467–471. (in Chinese with English abstract)

    Google Scholar 

  • Park H, Ahn I, Lee H E. 2007. Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones, 12(3): 275–282.

    Article  Google Scholar 

  • Park J H, Lee J J, Yoon S, Lee J, Choe S Y, Choe J. 2001. Genomic cloning of the Hsc71 gene in the hermaphroditic teleost Rivulus marmoratus and analysis of its expression in skeletal muscles: identification of a novel musclepreferred regulatory element. Nucleic Acids Res., 29: 3 041–3 050.

    Google Scholar 

  • Ritossa F. 1962. A New puffing pattern induced by temperature shock and DNP in Drosophila. Experientia., 18(12): 571–573.

    Article  Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.

    Google Scholar 

  • Sørensen J G, Kristensen T N, Loeschcke V. 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett., 6(11): 1 025–1 037.

    Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4 876–4 882.

    Article  Google Scholar 

  • Tsan M, Gao B. 2004. Cytokine function of heat shock proteins. Am. J. Physiol. Cell Physiol., 286(4): 739–744.

    Article  Google Scholar 

  • Tsan M F, Gao B. 2009. Heat shock proteins and immune system. J. Leukoc. Biol., 85(6): 905–910.

    Article  Google Scholar 

  • Vabulas R M, Ahmad-Nejad P, Da-Costa C, Miethke T, Kirschning C J, Hacker H. 2001. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem., 276(33): 31 332–31 339.

    Article  Google Scholar 

  • Vabulas R M, Ahmad-Nejad P, Ghose S, Kirschning C J, Jssels R D, Wagner H. 2002. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem., 277(17): 15 107–15 112.

    Article  Google Scholar 

  • Vayssier M, Le-Guerhier F, Fabien J F, Philippe H, Vallet C, Ortega-Pierres G. 1999. Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa. Parasitology, 119(1): 81–93.

    Article  Google Scholar 

  • Wan W J, Wang J T, Shi C B, Wu S Q. 2007. Gene expression of HSP70 in green swordtail Xiphophorus helleri exposed to Vibrio alginolyticus. Journal of Dalian Fisheries University, 22(5): 330–334. (in Chinese with English abstract)

    Google Scholar 

  • Weigl E, Kopecek P, Raska M, Hradilova S. 1999. Heat shock proteins in immune reactions. Folia Microbiol., 44(5): 561–566.

    Article  Google Scholar 

  • Wu L, Song L S, Xu W, Qiu L H, Li H L, Su J G. 2003. Identification and cloning of heat shock protein 70 gene from scallop Chlamys farreri. High Technol. Lett., 13(11): 75–79. (in Chinese with English abstract)

    Google Scholar 

  • Wu S J, Liu F H, Hu S M, Wang C. 2001. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem. J., 359: 419–426.

    Article  Google Scholar 

  • Wu S Q, Huang Z B, Yu R L, Pan H J, Shi C B. 1997. Approach for the application of Xiphophorus helleri as experiment animal. The Fourth Asia Fisheries Forum Published by the Asia Fisheries Society Beijing: China Ocean Press. (in Chinese with English abstract)

    Google Scholar 

  • Wu S Q, Huang Z B. 2005. Aquatic Laboratory Animal-Swordtail Fish (Xiphophorus helleri). China Agriculture Press, Beijing. (in Chinese)

    Google Scholar 

  • Xiong Q M, Lu C P. 2001. Detection of pathogenic Edwardsiella tarda. Acta Microbiologica Sinica, 41(6): 736–740. (in Chinese with English abstract)

    Google Scholar 

  • Xiong Q M, Lu C P. 2002. Immune Effect of Edwardasiella tarda on mice and Xiphophorus belleri. Chin. J. Vet. Sci., 22(3): 251–253. (in Chinese with English abstract)

    Google Scholar 

  • Yue X, Liu B Z, Sun L, Tang B J. 2011. Cloning and characterization of a hsp70 gene from Asiatic hard clam Meretrix meretrix which is involved in the immune response against bacterial infection. Fish & Shellfish Immunology, 30(3): 791–799.

    Article  Google Scholar 

  • Zafarulla M, Wisnieski J, Shieman S, Shworak N, Misra S, Gedamu L. 1992. Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from rainbow trout. Eur. J. Biochem., 204(2): 893–900.

    Article  Google Scholar 

  • Zhang A Y, Zhou X F, Wang X Y, Zhou H. 2011. Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPSchallenged peripheral blood lymphocytes. Comparative Biochemistry and Physiology, Part B, 159(2): 109–114.

    Article  Google Scholar 

  • Zhang J H, Chu W H, Lu C P. 2004. Evaluation of biofilm of Aeromonas hydrophila for oral vaccination. Journal of Fishery Sciences of China, 11(5): 404–407. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqin Wu  (吴淑勤).

Additional information

Supported by the National Key Technology R&D Program of China (No. 2012BAD25B02) and the Natural Science Foundation of Guangdong Province of China (Nos. 7004728, 06024033) LI Ningqiu and FU Xiaozhe contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Fu, X., Han, J. et al. Molecular cloning and expression of a heat-shock cognate 70 (hsc70) gene from swordtail fish (Xiphophorus helleri). Chin. J. Ocean. Limnol. 31, 821–829 (2013). https://doi.org/10.1007/s00343-013-2208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2208-x

Keyword

Navigation