Skip to main content
Log in

Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant’s schizothoracin (Schizothorax prenanti)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Through the RT-PCR and rapid amplification of cDNA ends, two complementary deoxyribonucleic acid (cDNA) clones encoding heat-shock cognate 70 (HSC70, designated Sp-HSC70) and inducible heat-shock protein 70 (HSP70, designated Sp-HSP70) were isolated from the liver of Prenant’s schizothoracin (Schizothorax prenanti). The cDNAs were 2344- and 2292-bp in length and contained 1950- and 1932-bp open reading frames, encoded proteins of 649 and 643 amino acids, respectively. Amino acid sequence analysis indicated that both Sp-HSC70 and Sp-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (an ATP-binding site motif, a bipartite nuclear targeting signal), and a cytoplasmic characteristic motif EEVD. Homology analysis revealed that Sp-HSC70 and Sp-HSP70 shared 77.5 % identity and Sp-HSC70 shared more than 81.1 % identity with the known HSC70s of other vertebrates, while Sp-HSP70 shared more than 77.5 % identity with the known HSP70s of other vertebrates. Fluorescent real-time quantitative RT-PCR showed that Sp-HSC70 and Sp-HSP70 mRNAs were found in all tested tissues, including blood, brain, heart, liver, spleen, head kidney, white muscle, skin, gonad, hypophysis, red muscle, and gill. The Sp-HSC70 and Sp-HSP70 mRNA expression level in blood and head kidney displayed a significant increase in vibrio-challenged group with the bacterium Aeromonas hydrophila at 24 h post-infection compared to a control group. Temporally, there was a clear time-dependent expression pattern of Sp-HSC70 or Sp-HSP70 gene after bacterial challenge, and the expression of Sp-HSC70 and Sp-HSP70 mRNAs reached a maximum level at 12 and 6 h post-challenge, respectively. Both returned to control level after 7 × 24 h. The results suggest that Sp-HSC70 and Sp-HSP70 genes may play important roles in mediating the immune responses of A. hydrophila-related diseases in the Prenant’s schizothoracin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman PA, Forsyth RB, Mazur CF, Iwama GK (2000) Stress hormones and the cellular stress response in salmonids. Fish Physiol Biochem 23:327–336

    Article  CAS  Google Scholar 

  • Ahrens B, Issels RD (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperther 18:563–575

    Article  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Beg MU, Al-Subiai S, Beg KR, Butt SA, Al-Jandal N, Al-Hasan E, AI-Hussaini M (2010) Seasonal effect on heat shock proteins in fish from Kuwait Bay. Bull Environ Contam Toxicol 84:91–95

    Article  CAS  PubMed  Google Scholar 

  • Benjamin IJ, Williams RS (1994) 20 Expression and function of stress proteins in the ischemic heart. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory press, New York, pp 533–552

    Google Scholar 

  • Bierkens JG (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153:61–72

    Article  CAS  PubMed  Google Scholar 

  • Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 8:76–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The HSP70 and HSP60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cellura C, Toubiana M, Parrinello N, Roch P (2006) HSP70 gene expression in Mytilus galloprovincialis hemocytes is triggered by moderate heat shock and Vibrio anguillarum, but not by V. splendidus or Micrococcus lysodeikticus. Dev Comp Immunol 30:984–997

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Liu X, Zhang G, He J (2007) Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol 22:77–87

    Article  CAS  PubMed  Google Scholar 

  • Dang W, Hu Y, Zhang M, Sun L (2010) Identification and molecular analysis of a stress-inducible HSP70 from Sciaenops ocellatus. Fish Shellfish Immunol 29:600–607

    Article  CAS  PubMed  Google Scholar 

  • Deane EE, Woo NY (2005) Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochem Biophys Res Commun 330:776–783

    Article  CAS  PubMed  Google Scholar 

  • Deane EE, Li J, Woo NY (2004) Modulated heat shock protein expression during pathogenic Vibrio alginolyticus stress of sea bream. Dis Aquat Org 62:205–215

    Article  CAS  PubMed  Google Scholar 

  • Demand J, Luders J, Hohfeld J (1998) The carboxy-terminal domain of HSC70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding R (1994) The fishes of Sichuan, China. Sichuan Publishing House of Science and Technology, Chengdu, pp 397–406 (in Chinese)

    Google Scholar 

  • Du Z, Huang X, Wang K (2011) Isolation and identification of etiology of skin ulcer in Schizothorax prenanti. J Sichuan Agric Univ 29(2):274–279 (in Chinese)

    Google Scholar 

  • Eder KJ, Leutenegger CM, Köhler HR, Werner I (2009) Effects of neurotoxic insecticides on heat-shock proteins and cytokine transcription in Chinook salmon (Oncorhynchus tshawytscha). Ecotoxicol Environ Saf 72:182–190

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Franzellitti S, Fabbri E (2005) Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun 336:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in HSP70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fuertes MA, Pérez JM, Soto M, Menéndez M, Alonso C (2004) Thermodynamic stability of the C-terminal domain of the human inducible heat shock protein 70. Biochim Biophys Acta 1699:45–56

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  CAS  PubMed  Google Scholar 

  • Guo X (1995) Factors inducing the mechanism and effect of heat shock protein. Prog Physiol Sci 26:263–266 (in Chinese)

    CAS  Google Scholar 

  • Hammerer-Lercher A, Mair J, Bonatti J, Watzka SB, Puschendorf B, Dirnhofer S (2001) Hypoxia induces heat shock protein expression in human coronary artery bypass grafts. Cardiovasc Res 50:115–124

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones HSP70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Middleton P, Brunelli J, Drew RE, Thorgaard GH (2008) Heat shock protein (HSP70) RNA expression differs among rainbow trout (Oncorhynchus mykiss) clonal lines. Comp Biochem Physiol B Biochem 149:552–556

    Article  Google Scholar 

  • James P, Pfund C, Craig EA (1997) Functional specificity among HSP70 molecular chaperones. Science 275:387–389

    Article  CAS  PubMed  Google Scholar 

  • Jurgen F, Valerio M, Roberto R (2011) 2-DE proteomic analysis of HSP70 in mollusc Chamelea gallina. Fish Shellfish Immunol 30:739–743

    Article  CAS  PubMed  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  • Lin Y (2009) Study on the differential expression of HSP 70 gene in Cyprinus carpio. J. Anhui Agri. Sci 37(11):4915–4916, 5077 (in Chinese)

    Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ming J, Xie J, Xu P, Liu W, Ge X, Liu B, Cheng H, Zhou Y, Pan Q (2010) Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol 28:407–418

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay I, Nazir A, Saxena DK, Chowdhuri DK (2003) Heat shock response: HSP70 in environmental monitoring. J Biochem Mol Toxicol 17:249–254

    Article  CAS  PubMed  Google Scholar 

  • Rhee JS, Raisuddin S, Lee KW, Seo JS, Ki JS, Kim IC, Lee JS (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Phys C 149:104–112

    Google Scholar 

  • Rossi S, Snyder MJ (2001) Competition for space among sessile marine invertebrates: changes in HSP70 expression in two pacific cnidarians. Biol Bull 201:385–393

    Article  CAS  PubMed  Google Scholar 

  • Song L, Wu L, Ni D, Chang Y, Xu W, Xing K (2006) The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacterial challenge and naphthalin stress. Fish Shellfish Immunol 21:335–345

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Srivastava P (2002) Roles of heat heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tao J, Lai Y, Ren Y, Gong H, Kang G, Zhang X, Shi C, Wu S (2010) Development of a production procedure for bulk of inactivated mandarinfish pathogenic Aeromonas hydrophila vaccine. Chin J Biologicals 23(11):1222–1225 (in Chinese)

    CAS  Google Scholar 

  • Tomanek L, Sanford E (2003) Heat-shock protein 70 (HSP70) as a biochemical stress indicator: an experimental field test in two congenic intertidal gastropods (genus: Tegula). Biol Bull 205:276–284

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang J, Li A, Cai T (2004) Changes of cortisol and lysozyme levels in Carassius auratus blood after crowding stress and the fish sensitivity to pathogen. J Fish Sci China 11(5):408–412 (in Chinese)

    CAS  Google Scholar 

  • Wang Y, Xu J, Sheng L, Zheng Y (2007) Field and laboratory investigations of the thermal influence on tissue-specific HSP70 levels in common carp (Cyprinus carpio). Comp Biochem Phys A 148:821–827

    Article  Google Scholar 

  • Wang Z, Wu Z, Jian J, Lu Y (2009) Cloning and expression of heat shock protein 70 gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850) responding to bacterial challenge. Fish Shellfish Immunol 26:639–645

    Article  PubMed  Google Scholar 

  • Webb D, Gagnon MM (2009) The value of stress protein 70 as an environmental biomarker of fish health under field conditions. Environ Toxicol 24:287–295

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liu F, Hu S, Wang C (2001) Different combinations of the heat-shock cognate protein 70 (HSC70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem J 359:419–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu R, Sun Y, Lei L, Xie S (2008) Molecular identification and expression of heat shock cognate 70 (HSC 70) in the Pacific white shrimp Litopenaeus vannamei. Mol Biol 42:234–242

    Article  Google Scholar 

  • Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK (1999) The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today 5:525–531

    Article  CAS  PubMed  Google Scholar 

  • Zafarullah M, Wisniewski J, Shworak NW, Schieman S, Misra S, Gedamu L (1992) Molecular cloning and characterization of a constitutively expressed heat-shock-cognate hsc71 gene from rainbow trout. Eur J Biochem 204:893–900

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Q, Zhang Z, Cui M (2009) HSC70 gene and its tissue expression analysis in yellow catfish. Acta Hydrobiol Sin 33(3):426–434 (in Chinese)

    Google Scholar 

  • Zhang A, Zhou X, Wang X, Zhou H (2011) Characterization of two heat shock proteins (HSP70/HSC70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp Biochem Phys B 159:109–114

    Article  Google Scholar 

  • Zhou J, Wang W, He W, Wang L, Xin Y, Liu Y, Wang A (2010) Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. J Invertebr Pathol 103:170–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (No. NCET-11-0347). We would like to thank Dr. Yi Geng for providing Aeromonas hydrophi1a and suggestion for the challenge experiment, and Dr. Peter S. Rand for his revision of English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Song.

Additional information

Jiuxuan Li and Haibin Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, H., Zhang, X. et al. Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant’s schizothoracin (Schizothorax prenanti). Fish Physiol Biochem 41, 573–585 (2015). https://doi.org/10.1007/s10695-015-0030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0030-4

Keywords

Navigation