Skip to main content
Log in

Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barata C, Varo I, Navarro J C, Arun S, Porte C. 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physio., 140(C): 175–186.

    Google Scholar 

  • Bell J G, Cowey C B, Adron J W, Shanks A M. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). Br. J. Nutr., 53(1): 149–157.

    Article  Google Scholar 

  • Chan K M, Decker E A. 1994. Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. Nutr., 34: 403–426.

    Article  Google Scholar 

  • Chiou T J, Tzeng W F. 2000. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology, 154: 75–84.

    Article  Google Scholar 

  • Di Ilio C, Polidoro G, Arduini A, Muccini A, Federici G. 1983. Glutathione peroxidase, glutathione reductase, glutathione S-transferase, and gamma-glutamyltranspeptidase activities in the human early pregnancy placenta. Biochem. Med., 29(2): 143–148.

    Article  Google Scholar 

  • Góth L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta, 196(2–3): 143–151.

    Article  Google Scholar 

  • Habig W H, Jakoby W B. 1981. Glutathione S-transferases (rat and human). Methods Enzymol, 77: 218–231.

    Article  Google Scholar 

  • Halliwell B, Gutteridge J M C. 1999. Free Radicals in Biology and Medicine. Oxford University Press, Oxford. 1 454p.

    Google Scholar 

  • Jackson M J, O’Farrell S. 1993. Free radicals and muscle damage. Br. Med. Bull., 49: 630–641.

    Google Scholar 

  • Kappus H, Sies H. 1981. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia, 37: 1 233–1 241.

    Article  Google Scholar 

  • Ketterer B, Coles B, Meyer D J. 1983. The role of glutathione in detoxification. Environ. Health Perspect., 49: 59–69.

    Article  Google Scholar 

  • Livingstone D R, Garcia M P, Winston G W. 1989. Menadione stimulated oxyradical formation in digestive grand microsomes of the common mussel, Mytilus edulisz L. Aquat. Toxicol., 15: 213–236.

    Article  Google Scholar 

  • Livingstone D R, Garcia M P, Michel X, Narbonne J F, O’Hara S, Ribera D, Winston G W. 1990. Oxyradical production as a pollution-mediated mechanisms of toxicity in the common mussel, Mytilus edulis L. and other molluscs. Funct. Ecol., 4: 415–424.

    Article  Google Scholar 

  • Livingstone D R, Lips F, Garcia M P, Pipe R K. 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Biol., 112: 265–276.

    Article  Google Scholar 

  • Livingstone D R. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull., 42(8): 656–666.

    Article  Google Scholar 

  • Mai K, Mercer J P, Donlon J. 1995a. Comparative Studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture, 136: 165–180.

    Article  Google Scholar 

  • Mai K, Mercer J P, Donlon J. 1995b. Comparative Studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. III. Responses of abalone to various levels of dietary lipids. Aquaculture, 134: 65–80.

    Article  Google Scholar 

  • Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47(3): 469–474.

    Article  Google Scholar 

  • McDonagh B, Sheehan D. 2007. Effects of oxidative stress on protein thiols in the blue mussel Mytilus edulis: proteomic identification of target proteins. Proteomics, 7: 3 395–3 403.

    Article  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J. 1994. Importance of Se-glutathione peroxidase, catalase, and Cu, Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med., 17: 235–248.

    Article  Google Scholar 

  • Ngo E O, Nutter L M. 1994. Status of glutathione and glutathione-metabolizing enzymes in menadioneresistant human cancer cells. Biochem. Pharmacol., 20: 421–424.

    Article  Google Scholar 

  • Poston H A. 1971. Effect of excess vitamin K on growth, coagulation time and hematocrit values of brook trout fingerlings. Fish. Res. Bull., 34: 41–43.

    Google Scholar 

  • Ritola O, Livingstone D R, Peters L D, Lindström-Seppä. 2002. Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture, 210: 1–19.

    Article  Google Scholar 

  • Stephensen E, Sturve J, Ffrlin L. 2002. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp. Biochem. Physiol., 133(C): 435–442.

    Google Scholar 

  • Stohs S J, Bagghi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18: 321–336.

    Article  Google Scholar 

  • Suttie J W. 1991. Vitamin K. In: Machlin L J ed. Handbook of Vitamins. Marcel Dekker, New York. p.154–194.

    Google Scholar 

  • Talcott R E, Smith M T, Giannini D D. 1985. Inhibition of microsomal lipid peroxidation by naphthoquinones: Structure-activity relationships and possible mechanisms of action. Arch. Biochem. Biophys., 241: 88–94.

    Article  Google Scholar 

  • Tampo Y, Yonaha M. 1996. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes. Arch. Biochem. Biophys., 334(1): 163–174.

    Article  Google Scholar 

  • Tan B, Mai K. 2001. Effects of dietary vitamin K on survival, growth, and tissue concentrations of phylloquinone (PK) and menaquinone-4 (MK-4) for juvenile abalone, Haliotis discus hannai Ino. J. Exp. Mar. Biol. Ecol., 256: 229–239.

    Article  Google Scholar 

  • Zaidi S M, Banu N. 2004. Antioxidant potential of vitamins A, E and C in modulating oxidative stress in rat brain. Clin. Chim. Acta, 340(1–2): 229–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Zhang  (张文兵).

Additional information

Supported by National Natural Science Foundation of China (No. 30972262)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Xu, W., Mai, K. et al. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino. Chin. J. Ocean. Limnol. 30, 118–123 (2012). https://doi.org/10.1007/s00343-012-1014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1014-1

Keyword

Navigation