Skip to main content
Log in

Trophic ecology of small yellow croaker (Larimichthys polyactis Bleeker): stable carbon and nitrogen isotope evidence

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The trophic ecology of the small yellow croaker (Larimichthys polyactis) was studied using stable isotope analyses. Samples were collected from July to September 2009 and 34 individuals from eight sites were examined for stable carbon and nitrogen isotopes. Stable carbon isotope ratios (δ 13C) ranged from −20.67 to −15.43, while stable nitrogen isotope ratios (δ 15N) ranged 9.18–12.23. The relationship between δ 13C and δ 15N suggested high resource partitioning in the sampling area. Significant differences in stable isotope values among the eight sampling sites may be linked to environmental diversities involving various physical processes (such as ocean current, wind and tide) and different carbon sources. Furthermore, the stable isotope ratios may also explain the ontogenetic variability in diet and feeding, because δ 13C and δ 15N varied significantly with increasing body size. The findings are consistent with other studies on diet analyses in small yellow croaker. It was also demonstrated that stable isotope analysis could be used to estimate the trophic characters of small yellow croaker in feeding patterns and migrating habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  • Bray T R, Curtis J T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27: 325–349.

    Article  Google Scholar 

  • Brodeur R D, Pearcy W G. 1992. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser., 84: 101–119.

    Article  Google Scholar 

  • Cabana G, Rasmussen J. 1994. Modelling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372: 255–257.

    Article  Google Scholar 

  • Carr W E S, Adams C A. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. Trans. Am. Fish. Soc., 102: 511–540.

    Article  Google Scholar 

  • Cheng J H, Cheung W W L, Pitcher T J. 2009. Mass-balance ecosystem model of the East China Sea. Prog. Nat. Sci., 19: 1 271–1 280.

    Google Scholar 

  • Clarke K R, Gorley R N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.

    Google Scholar 

  • Currin C A, Wainright S C, Able K W, Weinstein M P, Fuller C M. 2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries, 26: 495–510.

    Article  Google Scholar 

  • DeNiro M J, Epstein S. 1978. Influence of diet on the distribution of carbon isotope in animals. Geochim. Cosmochim. Acta, 42: 495–506.

    Article  Google Scholar 

  • France R L. 1996. Absence or masking of metabolic fractionations of 13C in a freshwater benthic food web. Freshwater Biol., 36: 1–6.

    Article  Google Scholar 

  • Guiguer K R R A, Reist J D, Power M, Babaluk J A. 2002. Using stable isotopes to confirm the trophic ecology of Arctic charr morphotypes from Lake Hazen, Nunavut, Canada. J. Fish. Biol., 60: 348–362.

    Article  Google Scholar 

  • Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K. 2005. Stable isotope food web studies: a case for standardized sample treatment. Mar. Ecol. Prog. Ser., 287: 251–253.

    Article  Google Scholar 

  • Jennings S, Pinnegar J K, Polunin N V C, Warr K J. 2002. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser., 226: 77–85.

    Article  Google Scholar 

  • Jiang Y Z, Cheng J H, Li S F. 2009. Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea. Mar. Ecol. Prog. Ser., 387: 265–273.

    Article  Google Scholar 

  • Laughlin R. 1982. Feeding habits of the blue crab, Callinectes sapidus Rathbun, in the Apalachicola estuary, Florida. Bull. Mar. Sci., 32: 807–822.

    Google Scholar 

  • Lin L S. 2007. Study on feeding habit and trophic level of redlip croaker in Changjiang estuary. Mar. Fish., 29: 44–48. (in Chinese with English abstract)

    Google Scholar 

  • Lin L S. 2009. Study on Fishery Biology and Management Strategy of Larimichthys Polyactis in the Southern Yellow Sea and the East China Sea. Ph. D. Thesis. Ocean University of China, Qingdao, China. (in Chinese with English abstract)

    Google Scholar 

  • Madurell T, Fanelli E, Cartes J E. 2008. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J. Mar. Syst., 71: 336–345.

    Article  Google Scholar 

  • Matthews B, Mazumder A. 2005. Temporal variation in body composition (C:N) helps explain seasonal patterns of zooplankton δ 13C. Freshwater Biol., 50: 502–515.

    Article  Google Scholar 

  • Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim. Cosmochim. Acta, 48: 1 135–1 140.

    Article  Google Scholar 

  • Owens N J P. 1987. Natural variations in 15N in the marine environment. Adv. Mar. Biol., 24: 389–451.

    Article  Google Scholar 

  • Pomeroy L R, Wiebe W J, Deibel D, Thompson R J, Rowe G T, Pakulski J D. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75: 143–159.

    Article  Google Scholar 

  • Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83: 703–718.

    Article  Google Scholar 

  • Rau G H. 1980. Carbon-13/Carbon-12 variation in subalpine lake aquatic insects: food source implications. Can. J. Fish. Aquat. Sci., 37: 742–746.

    Article  Google Scholar 

  • Renones O, Polunin N V C, Goni R. 2002. Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: an isotope and stomach content analysis. J. Fish Biol., 61: 122–137.

    Article  Google Scholar 

  • Rooker J R, Turner J P, Holt S A. 2006. Trophic ecology of Sargassum associated fished in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar. Ecol. Prog. Ser., 313: 249–259.

    Article  Google Scholar 

  • Romanuk T N, Levings C D. 2005. Stable isotope analysis of trophic position and terrestrial vs. marine carbon sources for juvenile Pacific salmonids in nearshore marine habitats. Fish. Manag. Ecol., 12: 113–121.

    Article  Google Scholar 

  • Satterfield IV F R, Finney B P. 2002. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Prog. Oceanogr., 53: 231–246.

    Article  Google Scholar 

  • Sheridan P. 1979. Trophic resource utilization by three species of Sciaenid fishes in a Northwest Florida estuary. Northeast Gulf Sci., 3: 1–15.

    Google Scholar 

  • Sherwood G D, Rose G A. 2005. Stable isotope analysis of some representative fish and invertebrate of the Newfoundland and Labrador continental shelf food web. Estuar. Coast. Shelf Sci., 63: 537–539.

    Article  Google Scholar 

  • Tieszen L L, Boutton T W, Tesdahl K G, Slade N H. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of diet. Oecologia, 57: 32–37.

    Article  Google Scholar 

  • Vander Zanden M J, Rasmussen J B. 2001. Variation in δ 15N and δ 13C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46: 2 061–2 066.

    Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T. 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res., 34: 829–841.

    Article  Google Scholar 

  • Wilson R M, Chanton J, Lewis G, Nowacek D. 2009. Isotopic variation (δ 15N, δ 13C, and δ 34S) with body size in post-larval estuarine consumers. Estuar. Coast. Shelf Sci., 83: 307–312.

    Article  Google Scholar 

  • Wootton R J. 1990. Ecology of Teleost Fishes. Chapman and Hall Press, London.

    Google Scholar 

  • Xue Y, Jin X, Zhang B, Liang Z. 2005. Seasonal, diel and ontogenetic variation in feeding patterns of small yellow croaker in the central Yellow Sea. J. Fish Biol., 67: 33–50.

    Article  Google Scholar 

  • Yan L P, Li J S, Shen D G, Yu L F, Ling L Y. 2006. Variations in diet composition and feeding intensity of small yellow croaker Larimichthys polyactis Bleeker in the southern Yellow Sea and northern East China Sea. Mar. Fish., 27: 117–123. (in Chinese with English abstract)

    Google Scholar 

  • Yin M C. 1995. Ecology of Fish. Agriculture Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Zhuang P, Wang Y H, Li S F, Deng S M, Li C S, Ni Y. 2006. Fishes of the Yangtze Estuary. Shanghai Scientific and Technical Publishers Press, Shanghai, China. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfa Li  (李圣法).

Additional information

Supported by the Special Research Fund for the National Non-profit in East China Sea Fisheries Research Institute (No. 2009M01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, W., Chen, X., Jiang, Y. et al. Trophic ecology of small yellow croaker (Larimichthys polyactis Bleeker): stable carbon and nitrogen isotope evidence. Chin. J. Ocean. Limnol. 29, 1033–1040 (2011). https://doi.org/10.1007/s00343-011-0188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0188-2

Keyword

Navigation