Skip to main content
Log in

Characterization of SNAP-25 gene from marine teleostean, Lateolabrax japonicus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The t-SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa) plays an essential role in regulating fusion between the vesicle and plasma membranes during exocytosis. To clone and characterize SNAP-25 gene, the first step in the functional study of SNARE proteins in marine teleostean, was to obtain the cDNA of sea perch SNAP-25 (SPsn25) by RT-PCR and RACE-PCR amplification of a Japanese sea perch. The full-length cDNA of 831bp contains a CDS of 615 bp, coding 204 amino acid residues, and a 5 UTR of 219bp. Bioinformatic analysis revealed that SPsn25 corresponds with SNAP-25a isoform and shares 91.1% identity with SNAP-25a of a goldfish and a zebrafish. The SPsn25 expression in both mRNA and protein levels in the Japanese sea perch had been identified through semi-quantitative RT-PCR and Western Blot assay. Together, these data again confirmed the nerve tissue specificity of the fish SNAP-25 gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SPsn25:

SNAP-25 of sea perch

SNAP-25:

syaptosome-associated protein of 25 kDa

SNARE:

soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor

t-SNARE:

target-membrane SNARE

CDS:

coding sequence

UTR:

untranslated region

References

  • Bark, I. C., 1993. Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protein. J. Mol. Biol. 233: 67–76.

    Article  Google Scholar 

  • Bark, I. C., K. M. Hahn, A. E. Ryabinin and M. Wilson, 1995. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events neural development. Proc. Natl. Acad. Sci. USA: Neurobiol. 92: 1 510–1 514.

    Google Scholar 

  • Bracher, A., J. Kadlec, H. Betz and W. Weissenhorn, 2002 X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277: 26 517–26 523.

    Article  Google Scholar 

  • Chen, Y. A. and R. H. Scheller, 2001. SNARE-mediated membrane fusion. Nature: Mol. Cell Biol. 2: 98–106.

    Article  Google Scholar 

  • Fasshauer, D., R. B. Sutton, A. T. Brunger and R. Jahn, 1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc. Natl. Acad. Sci. USA: Neurobiol. 95: 15 781–15 786.

    Google Scholar 

  • Fasshauer, D., A W. W. Antonin, M. Margittai, S. Pabst and R. Jahn, 1999. Mixed and non-cognate SNARE complexes-characterization of assembly and biophysical properties. J. Biol. Chem. 274: 15 440–15 446.

    Article  Google Scholar 

  • Gerst, J. E., 1999. Review: SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell. Mol. Life Sci. 55: 707–734.

    Article  Google Scholar 

  • Hall, A. V., H. Antoniou, Y. Wang, A. H. Cheng, A. M. Arbus, S. L. Olson and W. C. Liu, 1994. Structural Organization of the Human Neuronal Nitric Oxide Synthase Gene (NOS1). J. Biol. Chem. 269: 33 082–33 090.

    Google Scholar 

  • Hodel, A., 1998. Molecules in Focus SNAP-25. Inter. J. Biochem Cell Biol. 30: 1 069–1 073.

    Google Scholar 

  • Huang, X. H., L. Sheu, Y. Tamori, W. S. Trimble and H. Y. Gaisano, 2001. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23. Pancreas 23: 125–133.

    Article  Google Scholar 

  • Nagy, G., I. Milosevic, D. Fasshauer, E. M. Müller, Bert L. de Groot, T. Lang, M. C. Wilson and J. B. Sørensen, 2005. Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Molecular Biology of the Cell 16: 5 675–5 685.

    Article  Google Scholar 

  • Oyler, G. A., G. A. Higgins, R. A. Hart, E. Battenberg, M. Billingsley, F. E. Bloom and M. C. Wilson, 1989. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109: 3 039–3 052.

    Article  Google Scholar 

  • Peterson, G. L., 1977. A simplification of the protein assay method of lowry et al. which is more generally applicable. Anal. Chem. 83: 346–356.

    Google Scholar 

  • Risinger, C., E. Salaneck, C. Soderberg, M. Gates, J. H. Postlethwait and D. Larhammar, 1998. Cloning of two loci for synapse protein Snap25 in zebrafish: comparison of paralogous linkage groups suggests loss of one locus in the mammalian lineage. Journal of Neuroscience Research 54: 563–573.

    Article  Google Scholar 

  • Roth, D. and R. D. Burgoyne, 1994. SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett. 351: 207–210.

    Article  Google Scholar 

  • Sutton, R. B., D. Fasshauer, R. Jahn and A. T. Brunger, 1998. Crystal structure of a SNARE complex involved in synaptic exocytosisat 2.4A° resolution. Nature 395: 547–353.

    Article  Google Scholar 

  • Söllner, T., M. K. Bennett, S. W. Whiteheart, R. H. Scheller and J. E. Rothman, 1993a. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 75: 409–418.

    Article  Google Scholar 

  • Söllner, T., S. W. Whiteheart, M. Brunner, H. Erdjument-Bromage, S. Geromanos, P. Tempst and J. E. Rothman, 1993b. SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324.

    Article  Google Scholar 

  • Sørensen, J. B., G. Nagy, F. Varoqueaux, R. B. Nehring, N. Brose, M. C. Wilson and E. Neher, 2003. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75–86.

    Article  Google Scholar 

  • Trimble, W. S., D. M. Cowan and R. H. Scheller, 1988. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Nat. Acad. Sci. USA 85: 4 538–4 542.

    Article  Google Scholar 

  • Wang, Y., D. C. Newton, G. B. Robb, C. L. Kau, T. L. Miller, A. H. Cheung and A. V. Hall, 1999. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA: Neurobiol. 96: 12 150–12 155.

    Google Scholar 

  • Wang, J. Y., S. G. Zhu and C. F. Xu, 2002. Biochemistry. Higher Educational Press, Beijing, China, p. 57–59. (in Chinese)

    Google Scholar 

  • Wheeler, M., L. Sheu, M. Ghai, A. Bouquillon, G. Grondin, U. Weller and A. R. Beaudoin, 1996. Characterisation of SNARE protein expression in beta cell lines and pancreatic islets. Endocrinol. 137: 1 340–1 348.

    Article  Google Scholar 

  • Woodman, P. G., 1997. Review: The roles of NSF, SNAPs and SNAREs during membrane fusion. Biochm. Biophy. Acta. 1 357: 155–172.

    Article  Google Scholar 

  • Yano, T., 1996. The nonspecific immune system: humoral defense. In: Iwama G. and Nakanishi T. eds. The Fish Immune System: Organism Pathogen and Environment. Academic Press (San Diego), p.105–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Xiaohang  (黄晓航).

Additional information

Supported by the NSFC (No.40476060) and Hi-Tech Research and Development Program of China (No. 2002AA629120).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Huang, X., Chai, Y. et al. Characterization of SNAP-25 gene from marine teleostean, Lateolabrax japonicus . Chin. J. Ocean. Limnol. 25, 378–385 (2007). https://doi.org/10.1007/s00343-007-0378-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0378-0

Keyword

Navigation