Skip to main content
Log in

Impact of temperature on optical properties of Tm3+-doped disordered oxide crystals for cryogenic lasers emitting near 1.9 μm: a comparative study

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical spectra of transitions between the 3H6 and 3F4 manifolds of Tm3+ ions in disordered crystal lattices of Gd3Ga5O12–Gd3Al5O12, Lu2SiO5–Gd2SiO5 solid solutions and in LiNbO3 crystals were recorded at several temperatures between 80 K and 300 K. Obtained experimental data were analyzed to examine the spectroscopic peculiarities of Tm3+ transitions that governs the temperature dependence of absorption and emission properties. The impact of structural disorder on the lasing ability at cryogenic temperatures upon resonant (in-band) optical pumping was assessed. In particular, it was found that peak stimulated emission cross section values at respective free generation wavelengths increase by a factor of two when samples examined are cooled down from 300 K to 80 K. At 80 K the laser operation wavelength can be tuned in regions 1940–2063 nm for GAGG: Tm3+, 1764–1853 nm for LNO: Tm3+ and 1778–2074 nm for LGSO: Tm3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. M. Ganija, A. Hemming, N. Simakov, K. Boyd, J. Haub, P. Veitch, J. Munch, Opt. Express. 25, 31889 (2017). https://doi.org/10.1364/OE.25.031889

    Article  ADS  Google Scholar 

  2. D.C. Brown, V. Envid, J. Zembek, Appl. Opt. 51, 8147 (2012). https://doi.org/10.1364/AO.51.008147

    Article  ADS  Google Scholar 

  3. R.J. Tso Yee Fan, P.A. Ochoa, Reed, 10, 1700605 (2015) https://doi.org/10.1109/JQE.2015.2473672

  4. J. Li, T. Yan, J. Liang, J. Cai, Opt. Commun. 334, 118 (2015). https://doi.org/10.1016/j.optcom.2014.08.007

    Article  ADS  Google Scholar 

  5. T. Sanamyan, J. Opt, Soc. Am. B 33, D1 (2016). https://doi.org/10.1364/JOSAB.33.0000D1

    Article  ADS  Google Scholar 

  6. V. Jambunathan, T. Miura, L. Těsnohlídková, A. Lucianetti, T. Mocek, Laser Phys. Lett. 12, 015002 (2015). https://doi.org/10.1088/1612-2011/12/1/015002

    Article  ADS  Google Scholar 

  7. D.C. Brown, T.M. Bruno, J.M. Singley, Opt. Express. 18, 16573 (2010). https://doi.org/10.1364/OE.18.016573

    Article  ADS  Google Scholar 

  8. W. Wang, X. Yang, Y. Shen, L. Li, L. Zhou, Y. Yang, Y. Bai, W. Xie, G. Ye, X. Yu, App Phys. B 124, 82 (2018). https://doi.org/10.1007/s00340-018-6949-2

    Article  ADS  Google Scholar 

  9. K. Veselsky, J. Šulc, H. Jelínkova, Proceedings of SPIE - The International Society for Optical Engineering Volume 12399, 123990J (2023), https://doi.org/10.1117/12.2649139

  10. N. Ter-Gabrielyan, V. Fromzel, Z. Yan, X. Han, H. Zhang, J. Wang, M. Dubinskii, Opt. Mat. Express. 4, 1355 (2014). https://doi.org/10.1364/OME.4.001355

    Article  ADS  Google Scholar 

  11. N. Ter-Gabrielyan, V. Fromzel, Wavelength tuning in cryogenically cooled lasers based on Er-doped orthovanadates. Appl. Opt. 56 (2017). https://doi.org/10.1364/AO.56.000B70. B70-B73

  12. N. Ter-Gabrielyan, V. Fromzel, W. Ryba-Romanowski, T. Lukasiewicz, M. Dubinskii, Opt. Express. 20, 6080 (2012). https://doi.org/10.1364/OE.20.006080

    Article  ADS  Google Scholar 

  13. U. Demirbas, M. Keller, J. Thesinga, Y. Hua, S. Reuter, F. Kärtner, M. Pergament, App Phys. B 127, 46 (2021). https://doi.org/10.1007/s00340-021-07588-8

    Article  ADS  Google Scholar 

  14. L.E. Zapata, D.J. Ripin, T.Y. Fan, Opt. Lett. 35, 1854 (2010). https://doi.org/10.1364/OL.35.001854

    Article  ADS  Google Scholar 

  15. M. Kilinc, U. Demirbas, J. Thesinga, M. Kellert, M. Pergament, F. Kärtner, Investigation of Fractional Thermal Load in Cryogenically Operated Yb:YLF and Yb:YAG Lasers, Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC Code 192392 (2023), https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10231809

  16. M. Kilinc, U. Demirbas, J.B. Gonzalez-Diaz, J. Thesinga, M. Kellert, G. Palmer, M. Pergament, F. Kärtner, Opt. Mat. Express 13, 3200 (2023), https://doi.org/10.1364/OME.503085

  17. M. Hemmer, D. Sánchez;, M. Jelínek, H. Jelínková, V. Kubeček;, J. Biegert, Fiber-seeded, 10-ps, 2050-nm, multi-mJ, cryogenic Ho:YLF CPA, (2014) Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, https://doi.org/10.1364/CLEO_SI.2014.SM1F.3

  18. M. Ganija, K. Boyd, J. Munch, High-Power Q-switched Near Infrared Cryogenic Lasers, Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC Code 192392, (2023), https://doi.org/10.1109/CLEO/EUROPE-EQEC57999.2023.10231721

  19. J. Kratochvil, P. Bohaček, J. Šulc, M. Nĕmec, M. Fibrich, H. Jelínkova., B. Trund, L. Havlak, K. Jurek, M. Nikl, Tm, Ho:GGAG disordered Garnet Crystal for tunable 2.1 µm cryogenically cooled laser, OSA high-brightness sources and light-driven interactions Congress (2020), MTu3C.4

  20. J. Šulc, P. Boháček, M. Němec, M. Fibrich, H. Jelínková, B. Trunda, L. Havlák, K. Jurek, M. Nikl, Tm:GGAG crystal for 2 µm tunable diode-pumped laser. SPIE. 9893, 98930 (2016). https://doi.org/10.1117/12.2227641

    Article  ADS  Google Scholar 

  21. J. Li, T. Yan, J. Liang, J. Cai, Opt. Commun. 334, 118 (2015). https://doi.org/10.1016/j.optcom.2014.08.007

    Article  ADS  Google Scholar 

  22. C. Li, R. Moncorge, J.C. Souriau, C. Wyon, Opt. Commun. 101, 356 (1993). https://doi.org/10.1016/0030-4018(93)90729-O

    Article  ADS  Google Scholar 

  23. K. Veselsky, P. Bohaček, J. Šulc, H. Jelínkova, B. Trunda, L. Havlak, K. Jurek, M. Nikl, Temperature influence on diode pumped Yb:GGAG laser. SPIE. 10238, 1023812 (2017). https://doi.org/10.1117/12.2265016

    Article  Google Scholar 

  24. M. Nĕmec, P. Bohaček, R. Svejkar, J. Šulc, H. Jelínkova, B. Trund, L. Havlak, M. Nikl, K. Jurek, Opt. Mat. Express. 5, 1249 (2020). https://doi.org/10.1364/OME.383098

    Article  ADS  Google Scholar 

  25. W. Ryba-Romanowski, R. Lisiecki, J. Komar, B. Macalik, M. Berkowski, Materials 16, 2095 (2023) https://doi.org/10.3390/ma16052095

  26. T. Kuwano, S. Saito, U. Hase, J. Cryst. Growth. 92, 17 (1988). https://doi.org/10.1016/0022-0248(88)90427-7

    Article  ADS  Google Scholar 

  27. A. Yoshikawa, Y. Fujimoto, A. Yamaji, S. Kurosawa, J. Pejchal, M. Sugiyama, S. Wakahara, Y. Futami, Y. Yokota, K. Kamada, K. Yubuta, T. Shishido, M. Nikl, Opt. Mater. 35, 1882 (2013). https://doi.org/10.1016/j.optmat.2013.02.021

    Article  ADS  Google Scholar 

  28. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Usuki, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Cryst. Growth. 352, 84 (2012). https://doi.org/10.1016/j.jcrysgro.2012.02.002

    Article  ADS  Google Scholar 

  29. J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, A. Yoshikawa, Nucl. Instruments Methods Phys. Res. Sect. Accel Spectrometers Detect. Assoc. Equip. 712, 34 (2012), https://doi.org/10.1016/j.nima.2013.01.064

  30. O. Sidletskiy, V. Bondar, B. Grinyov, D. Kurtsev, V. Baumer, K. Belikov, K. Katrunov, N. Starzhinsky, O. Tarasenko, V. Tarasov, O. Zelenskaya, J. Cryst. Growth. 312, 601 (2010). https://doi.org/10.1016/j.jcrysgro.2009.11.048

    Article  ADS  Google Scholar 

  31. K. Hitomi, T. Onodera, T. Shoji, Y. Kurata, N. Shimura, T. Usui, H. Ishibashi, Evaluation of LGSO scintillators with Si PIN photodiodes, in: 2007 IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, pp. 2033–2035 (2007), https://doi.org/10.1109/NSSMIC.2007.4436551

  32. A. Nassalski, M. Kapusta, T. Batsch, D. Wolski, D. Mockel, W. Enghardt, M. Moszynski, IEEE Trans. Nucl. Sci. 54, 3 (2007). https://doi.org/10.1109/TNS.2006.890013

    Article  ADS  Google Scholar 

  33. C.L. Melcher, J.S. Schweitzer, C.A. Peterson, R.A. Manente, H. Suzuki, Crystal growth and scintillation properties of the rare earth oxyorthosilicates, in: Proc. SCINT’95 Int. Conf. Inorg. Scintill. Their Appl., pp. 309–316 (1996)

  34. G.B. Loutts, A.I. Zagumennyi, S.V. Lavrishchev, Y.D. Zavartsev, P.A. Studenikin, J. Cryst. Growth. 174, 331 (1997). https://doi.org/10.1016/S0022-0248(96)01171-2

    Article  ADS  Google Scholar 

  35. G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, P. Solarz, B. Macalik, M. Berkowski, M. Głowacki, V. Domukhovski, Cryst. Growth Des. 10, 3522 (2010), https://doi.org/10.1021/cg100429b

  36. H.E. Megaw, Acta Cryst. A24, 583 (1968). https://doi.org/10.1107/S0567739468001282

    Article  Google Scholar 

  37. S.C. Abrahams, P. Marsh, Acta Cryst. B42. 61 (1986). https://doi.org/10.1107/S0108768186098567

  38. N. Liy, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, J. Sol Stat. Chem. 101, 340 (1992). https://doi.org/10.1016/0022-4596(92)90189-3

    Article  ADS  Google Scholar 

  39. N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born, J. Phys. Chem. Solids. 55, 145 (1994). https://doi.org/10.1016/0022-3697(94)90071-X

    Article  ADS  Google Scholar 

  40. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, J. Garcia-Sole, Appl. Phys. Lett. 67, 3735 (1995), https://doi.org/10.1063/1.115366

  41. E. Cantelar, M. Quintanilla, P.L. Pernas, G.A. Torchia, G. Lifante, F. Cusso, J. Lumin. 128, 988 (2008). https://doi.org/10.1016/j.jlumin.2007.10.026

    Article  Google Scholar 

  42. T. Niedźwiedzki, J. Komar, M. Głowacki, M. Berkowski, W. Ryba-Romanowski, J. Lumin. 192, 77 (2017). https://doi.org/10.1016/j.jlumin.2017.05.081

    Article  Google Scholar 

  43. A. Strzęp, M. Głowacki, M. Szatko, K. Potrząsaj, R. Lisiecki, W. Ryba-Romanowski, J. Lumin. 220, 116962 (2020). https://doi.org/10.1016/j.jlumin.2019.116962

    Article  Google Scholar 

  44. L. Núnez, G. Lifante, F. Cusso, Appl. Phys. B 62, 485 (1996). https://doi.org/10.1007/BF01081048

    Article  ADS  Google Scholar 

  45. W. Ryba-Romanowski, G. Dominiak-Dzik, S. Gołąb, W.A. Pisarski, I. Pracka, J. Appl. Spect. 62, 903 (1995), https://doi.org/10.1007/BF02606658

  46. A.A. Kaminskii, Laser Crystals – Their Physics and Properties Springer Series in Optical Sciences (Springer-, Berlin Heidelberg New York, 1990). https://doi.org/10.1007/978-3-540-70749-3

    Book  Google Scholar 

  47. L. Nuñez, J.O. Tocho, E. Sanz-Garcia, E. Rodriguez, F. Cussó, D.C. Hanna, A.C. Tropper, A.C. Large, J. Lumin. 55, 253 (1993). https://doi.org/10.1016/0022-2313(93)90020-N

    Article  Google Scholar 

  48. L. Nuñez, F. Cussó, J. Phys. : Condens. Matt. 5, 5301 (1993). https://doi.org/10.1088/0953-8984/5/30/010

    Article  ADS  Google Scholar 

  49. S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, J. Quant. Electron. 28, 2619 (1992). https://doi.org/10.1109/3.161321

    Article  ADS  Google Scholar 

  50. V.K. Tikhomirov, J. Mendez-Ramos, V.D. Rodríguez, D. Furniss, A.B. Seddon, J. Alloys Compd. 436, 216 (2007). https://doi.org/10.1016/j.jallcom.2006.07.008

    Article  Google Scholar 

  51. R. Reisfeld, AIMS Mater. Sci. 2, 37 (2015). https://doi.org/10.3934/matersci.2015.2.37

    Article  Google Scholar 

  52. B.M. Walsh, N.P. Barnes, B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998). https://doi.org/10.1063/1.367037

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RL: Conceptualization, Investigation, Formal Analysis, Project administration, Writing—original draft preparation.BM: Methodology, Investigation. JK: Methodology, Investigation. MB: Methodology, Investigation.WR: Conceptualization, Formal Analysis, Project administration, Supervision, Writing—original draft preparation.

Corresponding author

Correspondence to R. Lisiecki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisiecki, R., Komar, J., Macalik, B. et al. Impact of temperature on optical properties of Tm3+-doped disordered oxide crystals for cryogenic lasers emitting near 1.9 μm: a comparative study. Appl. Phys. B 130, 96 (2024). https://doi.org/10.1007/s00340-024-08238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08238-5

Navigation