Skip to main content
Log in

Mechanism causing the spatial distribution non-uniformity of the prompt optical crosstalk effect in G-APD cells of silicon photomultipliers

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The optical crosstalk effect in Silicon Photomultipliers (SiPM) is unnecessary parasitic effects. The mechanism leading to the non-uniform spatial distribution of the prompt optical crosstalk in SiPMs was investigated in detail herein. The experimental results showed that the optical crosstalk probability (Pct) in SiPMs without optical isolation trenches was clearly non-uniform within the Geiger-mode avalanche photodiode (G-APD) cell. However, the spatial distribution uniformity of Pct in G-APD cells was improved significantly in an SiPM containing optical isolation trenches. The different propagation distances of crosstalk photons emitted from different positions of the source G-APD cell to the nearest neighboring G-APD cell along a straight line, were the main reason for the non-uniform spatial distribution of Pct in the SiPM. According to the experimental results, it can also be inferred that the emission of crosstalk photons is spatially localized during a G-APD cell’s avalanche event, and majority crosstalk photons are emitted during the early stage of the avalanche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. The authors ensure authenticity of data and materials.

References

  1. A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, N. Zorzi, J. Instrum. 11, P03023 (2016)

    Article  Google Scholar 

  2. K. Wagatsuma, M. Sakata, K. Ishibashi, A. Hirayama, H. Kawakami, K. Miwa, Y. Suzuki, K. Ishii, EJNMMI. Phys. 7, 1 (2020)

    Article  Google Scholar 

  3. B. Salvador, D.A.E. Pineda, L. Fernandez-Maza, A. Corral, S. Camacho-Leon, A. Luque, IEEE Sens. J. 19, 7702 (2019)

    Article  ADS  Google Scholar 

  4. F. Acerbi, S. Gundacker, Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detect. Assoc. Equip. 926, 16 (2019)

    Article  Google Scholar 

  5. S. Gundacker, A. Heering, Phys. Med. Biol. 65, 1701 (2020)

    Article  Google Scholar 

  6. P. La Rocca, S. Billotta, A. Blancato, D. Bonanno, G. Bonanno, G. Fallica, S. Garozzo, D.L. Presti, D. Marano, C. Pugliatti, Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detect. Assoc. Equip. 787, 236 (2015)

    Google Scholar 

  7. S. Ahmad, S. Blin, S. Callier, J. Cizel, S. Conforti, C. de La Taille, F. Dulucq, J. Fleury, G. Martin-Chassard, L. Raux, Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detect. Assoc. Equip 986, 164628 (2021)

    Article  Google Scholar 

  8. A. Kozyrev, A. Ruban, D. Shaukavy, G. Fedotovich, D. Grigoriev, L. Epshteyn, J. Instrum. 15, C10012 (2020)

    Article  Google Scholar 

  9. A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, Sensors (Basel) 19, 308 (2019)

    Article  ADS  Google Scholar 

  10. A. Koyama, R. Hamasaki, K. Shimazoe, H. Takahashi, T. Takeshita, I. Kurachi, T. Miyoshi, I. Nakamura, S. Kishimoto, Y. Arai, Nucl. Instrum. Methods Phys. Res. 924, 436 (2019)

    Article  ADS  Google Scholar 

  11. C. Piemonte, A. Gola, Nucl. Inst. Meth. Phys. Res A 926, 2 (2019)

    Article  ADS  Google Scholar 

  12. D. Renker, E. Lorenz, J. Instrum. 4, P04004 (2009)

    Article  Google Scholar 

  13. B.F. Aull, D.R. Schuette, D.J. Young, D.M. Craig, B.J. Felton, K. Warner, IEEE Sens. J. 15, 2123 (2015)

    Article  ADS  Google Scholar 

  14. F. Acerbi, G. Paternoster, A. Gola, V. Regazzoni, N. Zorzi, C. Piemonte, IEEE J. Quantum Elect. 54, 1 (2018)

    Article  Google Scholar 

  15. M.R. Hampel, A. Fuster, C. Varela, M. Platino, A. Almela, A. Lucero, B. Wundheiler, A. Etchegoyen, Nuclear Inst. Meth. Phys. Res. A 976, 164262 (2020)

    Article  Google Scholar 

  16. R. Ivan, I. Antonino, S. Roberto, L. Ivan, M. Stefano, G. Massimo, C. Sergio, Opt. Express 16, 8381 (2008)

    Article  Google Scholar 

  17. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, S. Cova, IEEE Photonics Technol. Lett. 20, 330 (2008)

    Article  ADS  Google Scholar 

  18. M. Mazzillo, D. Mello, P.P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, G. Fallica, IEEE Trans. Radiat. Plasma. Med Sci. 1, 212 (2017)

    Article  Google Scholar 

  19. M. Mazzillo, D. Mello, P.P. Barbarino, M.F. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S.A. Lombardo, G. Fallica, IEEE Sens. J. 17, 4075 (2017)

    Article  ADS  Google Scholar 

  20. J. Ninković, L. Andriček, C. Jendrisyk, G. Liemann, G. Lutz, H.-G. Moser, R. Richter, F. Schopper, Nucl. Inst. Meth. Phys. Res A 628, 407 (2010)

    Article  ADS  Google Scholar 

  21. M.L. Knoetig, J. Hose, R. Mirzoyan, IEEE Trans. Nucl. Sci. 61, 1488 (2014)

    Article  ADS  Google Scholar 

  22. P. Eckert, H.C. Schultz-Coulon, W. Shen, R. Stamen, A. Tadday, Nucl. Inst. Meth. Phys. Res. A 620, 217 (2010)

    Article  ADS  Google Scholar 

  23. C. Zhang, G.Q. Zhang, X.Y. Cao, C.L. Zhang, L.B. Li, Optik 239, 166864 (2021)

    Article  ADS  Google Scholar 

  24. M. Mazzillo, G. Condorelli, D. Sanfilippo, G. Valvo, B. Carbone, G. Fallica, S. Billotta, M. Belluso, G. Bonanno, L. Cosentino, A. Pappalardo, P. Finocchiaro, IEEE Trans. Nucl. Sci. 56, 2434 (2009)

    Article  ADS  Google Scholar 

  25. G. Bonanno, D. Marano, M. Belluso, S. Billotta, A. Grillo, S. Garozzo, G. Romeo, M.C. Timpanaro, IEEE Sens. J. 14, 3567 (2014)

    Article  ADS  Google Scholar 

  26. S. Gomi, H. Hano, T. Iijima, S. Itoh, K. Kawagoe, S.H. Kim, T. Kubota, T. Maeda, T. Matsumura, Y. Mazuka, K. Miyabayashi, H. Miyata, T. Murakami, T. Nakadaira, T. Nakaya, H. Otono, E. Sano, T. Shinkawa, Y. Sudo, T. Takeshita, M. Taguchi, T. Tsubokawa, S. Uozumi, M. Yamaoka, H. Yamazaki, M. Yokoyama, K. Yoshimura, T. Yoshioka, Nucl. Inst. Meth. Phys. Res. A 581, 427 (2007)

    Article  ADS  Google Scholar 

  27. O. Marinov, M.J. Deen, J.A. Jimenez-Tejada, J. Appl. Phys. 101, 064515 (2007)

    Article  ADS  Google Scholar 

  28. A. Spinelli, A.L. Lacaita, IEEE Trans. Elect. Dev. 44, 1931 (1997)

    Article  ADS  Google Scholar 

  29. A. Lacaita, S. Cova, A. Spinelli, F. Zappa, Appl. Phys. Lett. 62, 606 (1993)

    Article  ADS  Google Scholar 

  30. C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, IEEE Trans. Elect. Dev. 63, 1111 (2016)

    Article  ADS  Google Scholar 

  31. R. Mirzoyan, R. Kosyra, H.G. Moser, Nucl. Inst. Meth. Phys. Res A 610, 98 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 11975176), the Natural Science Foundation of Shaanxi (2022JQ-660), Key Research and Development Program of Shaanxi Province (No. 2023- YBGY-196), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant Nos. 22JSY030, 22JSY012), Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 22JC033).The authors thank Prof. Fabrice Retiere at TRIUMF for providing some SiPMs for measurements.

Author information

Authors and Affiliations

Authors

Contributions

Xinyue Cao wrote the main manuscript text and analyzed the results, Guoqing Zhang proposed the main ideas and overall planning, Chen Zhang and Yaxian Yang conducted some experiments, Lina Liu built the main experimental setup, Lianbi Li give some support for building the experimental setup, Xiaoxiang Han amended and checked the whole paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guoqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest pertaining to this work. We declare that we do not have any commercial or associative interests that represent conflicts of interest in connection with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 494 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zhang, G., Yang, Y. et al. Mechanism causing the spatial distribution non-uniformity of the prompt optical crosstalk effect in G-APD cells of silicon photomultipliers. Appl. Phys. B 129, 138 (2023). https://doi.org/10.1007/s00340-023-08073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08073-0

Keywords

Navigation