Skip to main content
Log in

Nonlinear improvement of measurement-device-independent quantum key distribution using multimode quantum memory

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper proposes a quantum key distribution (QKD) scheme for measurement-device-independent QKD (MDI-QKD) utilizing quantum memory (QM), which is based on two distinct functions of QM: on-demand storage and multimode storage. We demonstrate a nonlinear increase in the secure key rate due to the utilization of QM. In the protocol incorporating on-demand storage, it is acknowledged that the secure key rate is scaled by \(R=O(\sqrt{\eta _{{\text {ch}}}})\) as \(\eta _{{\text {ch}}}\), while as an alternative approach, we reveal that the improvement is \(O(m_{\text {s}}^2)\), with \(m_{\text {s}}\) being the number of modes in frequency (spatial) multiplexing in the scheme incorporating multimode storage. We adopt an atomic frequency comb as a QM that incorporates the two functions and propose an architecture based on MDI-QKD to attain experimental feasibility. This scheme can be extended to quantum repeaters, and even for a single quantum-repeater node, there is a nonlinear enhancement and an experimental incentive to increase the number of modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, Y.-G. Zhu, Nat. Photonics 16(2), 154–161 (2022)

    ADS  Google Scholar 

  2. W. Zhang, T. Leent, K. Redeker, R. Garthoff, R. Schwonnek, F. Fertig, S. Eppelt, W. Rosenfeld, V. Scarani, C.C.-W. Lim, Nature 607(7920), 687–691 (2022)

    ADS  Google Scholar 

  3. D. Nadlinger, P. Drmota, B. Nichol, G. Araneda, D. Main, R. Srinivas, D. Lucas, C. Ballance, K. Ivanov, E.-Z. Tan, Nature 607(7920), 682–686 (2022)

    ADS  Google Scholar 

  4. W.-Z. Liu, Y.-Z. Zhang, Y.-Z. Zhen, M.-H. Li, Y. Liu, J. Fan, F. Xu, Q. Zhang, J.-W. Pan, Phys. Rev. Lett. 129(5), 050502 (2022)

    ADS  Google Scholar 

  5. H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  6. C. Jones, D. Kim, M.T. Rakher, P.G. Kwiat, T.D. Ladd, New J. Phys. 18(8), 083015 (2016)

    ADS  Google Scholar 

  7. P. Zeng, H. Zhou, W. Wu, X. Ma, Nat. Commun. 13(1), 1–11 (2022)

    ADS  Google Scholar 

  8. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J.A. Slater, M. George, R. Ricken, M.P. Hedges, D. Oblak, C. Simon, W. Sohler, Phys. Rev. Lett. 113(5), 053603 (2014)

    ADS  Google Scholar 

  9. X. Liu, J. Hu, Z.-F. Li, X. Li, P.-Y. Li, P.-J. Liang, Z.-Q. Zhou, C.-F. Li, G.-C. Guo, Nature 594(7861), 41–45 (2021)

    ADS  Google Scholar 

  10. D. Lago-Rivera, S. Grandi, J.V. Rakonjac, A. Seri, H. Riedmatten, Nature 594(7861), 37–40 (2021)

    ADS  Google Scholar 

  11. M. Pompili, S.L. Hermans, S. Baier, H.K. Beukers, P.C. Humphreys, R.N. Schouten, R.F. Vermeulen, M.J. Tiggelman, L. Santos Martins, B. Dirkse, Science 372(6539), 259–264 (2021)

    ADS  Google Scholar 

  12. G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, Z. Zhou, Z.-H. Wang, J. Teng, G.-C. Guo, Optica 9(7), 812–823 (2022)

    ADS  Google Scholar 

  13. S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun. 8(1), 1–15 (2017)

    Google Scholar 

  14. M. Lucamarini, Z.L. Yuan, J.F. Dynes, A.J. Shields, Nature 557(7705), 400–403 (2018)

    ADS  Google Scholar 

  15. X.-B. Wang, Z.-W. Yu, X.-L. Hu, Phys. Rev. A 98(6), 062323 (2018)

    ADS  Google Scholar 

  16. X. Ma, P. Zeng, H. Zhou, Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  17. P. Zeng, W. Wu, X. Ma, Phys. Rev. Appl. 13(6), 064013 (2020)

    ADS  Google Scholar 

  18. Y.-M. Xie, Y.-S. Lu, C.-X. Weng, X.-Y. Cao, Z.-Y. Jia, Y. Bao, Y. Wang, Y. Fu, H.-L. Yin, Z.-B. Chen, PRX Quantum 3(2), 020315 (2022)

    ADS  Google Scholar 

  19. C. Panayi, M. Razavi, X. Ma, N. Lütkenhaus, New J. Phys. 16(4), 043005 (2014)

    ADS  Google Scholar 

  20. S. Abruzzo, H. Kampermann, D. Bruß, Phys. Rev. A 89(1), 012301 (2014)

    ADS  Google Scholar 

  21. N.L. Piparo, N. Sinclair, M. Razavi, Quantum Sci. Technol. 3(1), 014009 (2017)

    Google Scholar 

  22. F. Rozpędek, K. Goodenough, J. Ribeiro, N. Kalb, V.C. Vivoli, A. Reiserer, R. Hanson, S. Wehner, D. Elkouss, Quantum Sci. Technol. 3(3), 034002 (2018)

    ADS  Google Scholar 

  23. F. Schmidt, P. Loock, Phys. Rev. A 102(4), 042614 (2020)

    ADS  MathSciNet  Google Scholar 

  24. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81(26), 5932 (1998)

    ADS  Google Scholar 

  25. H. Buhrman, H. Röhrig, In: International Symposium on Mathematical Foundations of Computer Science, pp. 1–20. Springer (2003)

  26. P. Komar, E.M. Kessler, M. Bishof, L. Jiang, A.S. Sørensen, J. Ye, M.D. Lukin, Nat. Phys. 10(8), 582–587 (2014)

    Google Scholar 

  27. S. Wehner, D. Elkouss, R. Hanson, Science 362(6412), 9288 (2018)

    ADS  Google Scholar 

  28. A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpędek, M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. Oliveira Filho, et al. In: Proceedings of the ACM Special Interest Group on Data Communication, pp. 159–173 (2019)

  29. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414(6862), 413–418 (2001)

    ADS  Google Scholar 

  30. R. Stockill, M. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. Miller, C. Matthiesen, C. Le Gall, M. Atatüre, Phys. Rev. Lett. 119(1), 010503 (2017)

    ADS  Google Scholar 

  31. L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance, K. Thirumalai, J. Goodwin, D. Lucas, C. Ballance, Phys. Rev. Lett. 124(11), 110501 (2020)

    ADS  Google Scholar 

  32. O. Collins, S. Jenkins, A. Kuzmich, T. Kennedy, Phys. Rev. Lett. 98(6), 060502 (2007)

    ADS  Google Scholar 

  33. S. Guha, H. Krovi, C.A. Fuchs, Z. Dutton, J.A. Slater, C. Simon, W. Tittel, Phys. Rev. A 92(2), 022357 (2015)

    ADS  Google Scholar 

  34. H. Krovi, S. Guha, Z. Dutton, J.A. Slater, C. Simon, W. Tittel, Appl. Phys. B 122(3), 1–8 (2016)

    Google Scholar 

  35. M. Afzelius, C. Simon, H. De Riedmatten, N. Gisin, Phys. Rev. A 79(5), 052329 (2009)

    ADS  Google Scholar 

  36. D. Luong, L. Jiang, J. Kim, N. Lütkenhaus, Appl. Phys. B 122(4), 1–10 (2016)

    Google Scholar 

  37. E. Saglamyurek, N. Sinclair, J.A. Slater, K. Heshami, D. Oblak, W. Tittel, New J. Phys. 16(6), 065019 (2014)

    ADS  Google Scholar 

  38. M.K. Bhaskar, R. Riedinger, B. Machielse, D.S. Levonian, C.T. Nguyen, E.N. Knall, H. Park, D. Englund, M. Lončar, D.D. Sukachev, Nature 580(7801), 60–64 (2020)

    ADS  Google Scholar 

  39. N. Sinclair, K. Heshami, C. Deshmukh, D. Oblak, C. Simon, W. Tittel, Nat. Commun. 7(1), 1–6 (2016)

    Google Scholar 

  40. K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, T. Horikiri, Commun. Phys. 3(1), 1–7 (2020)

    Google Scholar 

  41. J. Pseiner, L. Achatz, L. Bulla, M. Bohmann, R. Ursin, Quantum Sci. Technol. 6(3), 035013 (2021)

    ADS  Google Scholar 

  42. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, Nat. Photonics 8(3), 224–228 (2014)

    ADS  Google Scholar 

  43. M. Razavi, M. Piani, N. Lütkenhaus, Phys. Rev. A 80(3), 032301 (2009)

    ADS  Google Scholar 

  44. P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, M. Afzelius, Phys. Rev. A 93(3), 032327 (2016)

    ADS  Google Scholar 

  45. A. Ortu, J.V. Rakonjac, A. Holzäpfel, A. Seri, S. Grandi, M. Mazzera, H. Riedmatten, M. Afzelius, Quantum Sci. Technol. 7(3), 035024 (2022)

    ADS  Google Scholar 

  46. O. Pietx-Casas, G.C.D. Amaral, T. Chakraborty, R. Berrevoets, T. Middelburg, J.A. Slater, W. Tittel, (2021) arXiv preprint arXiv:2111.13610

  47. R. Valivarthi, I. Lucio-Martinez, A. Rubenok, P. Chan, F. Marsili, V.B. Verma, M.D. Shaw, J. Stern, J.A. Slater, D. Oblak, Opt. Express 22(20), 24497–24506 (2014)

    ADS  Google Scholar 

  48. W.P. Grice, Phys. Rev. A 84(4), 042331 (2011)

    ADS  Google Scholar 

  49. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, et al. In: Optical Fiber Communication Conference, pp. 5–2. Optica Publishing Group (2014)

  50. M. Gündoğan, P.M. Ledingham, A. Almasi, M. Cristiani, H. De Riedmatten, Phys. Rev. Lett. 108(19), 190504 (2012)

    ADS  Google Scholar 

  51. X. Ma, M. Razavi, Phys. Rev. A 86(6), 062319 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Mohsen Razavi, Nicolò Lo Piparo, Masoome Fazelian, Kae Nemoto, and Toshihiko Sasaki for valuable discussions. This research was supported by JST Moonshot R &D Grant Number JPMJMS226C, JSPS KAKENHI Grant Number JP20H02652, and the National Institute of Information and Communications Technology Young Researchers Lab. We also acknowledge the members of the Quantum Internet Task Force, which is a research consortium aiming to realize the quantum internet, for comprehensive and interdisciplinary discussions of the quantum internet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Mizutani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of key rates dependent on \(T_2\)

If QM with on-demand storage is utilized, \(Y_{11}^{{\text {QM}}}\) can be described as follows [19, 36]:

$$\begin{aligned} Y_{11}^{{\text {QM}}}&= \frac{Y_{11}(\eta _{{\text {early}}},\eta _{{\text {late}}})}{N_{\text {L}}(\eta _{\mu A},\eta _{\nu B})}\cdot \frac{\eta _{1A}\eta _{1B}}{\eta _{\mu A}\eta _{\nu B}}\mu \nu e^{-\mu -\nu }, \end{aligned}$$
(8)

where \(\eta _{1K}, \eta _{\mu (\nu ) K}\quad (K=A,B)\) represent the readout efficiency from QM in single-photon states and average photon number \(\mu (\nu )\), respectively. Moreover, \(Y_{11}\) is given as follows [51]:

$$\begin{aligned}&Y_{11}(\eta _A,\eta _B) \nonumber&\\&= (1-p_{{\text {dc}}})^2 \times \left[ \frac{\eta _{A}\eta _{B}}{2}+(2\eta _{A}+2\eta _{B}-3\eta _{A}\eta _{B})p_{{\text {dc}}}+4(1-\eta _{A})(1-\eta _{B})p_{{\text {dc}}}^2\right] , \end{aligned}$$
(9)

where \(N_{\text {L}}\) represents the average number of attempts to load both QMs. The average number of attempts to load both memories, i.e., \(N_{\text {L}}(\eta _A,\eta _B)\), is approximated by \(N_{\text {L}} = \frac{3-2\eta _A}{\eta _A(2-\eta _A)} \approx \frac{3}{2\eta _A}\) when \(\eta _A = \eta _B \ll 1\) in the no-multimode scenario [32]. Furthermore, \(\eta _{{\text {early}}}\) and \(\eta _{{\text {late}}}\) represent the loading efficiencies of the QMs for photons arriving early and late, respectively [19]:

$$\begin{aligned} \eta _K^{{\text {QM}}}= \left\{ \begin{array}{l} \eta _{{\text {late}}} = \eta _{r0}\eta _{\text {d}},\quad \text {if QM K is late}, \\ \eta _{{\text {early}}} = \eta _r(t)\eta _{\text {d}},\quad \text {if QM K is early}, \end{array} \right. \end{aligned}$$
(10)

where t represents the storage time of the QM in the event that it is loaded early, which is given as \((t=|N_A-N_B|\tau )\). The calculation of the expected value for \(\eta _{{\text {early}}}\) is as follows:

$$\begin{aligned}&\overline{\eta _{{\text {early}}}} \nonumber&\\&= \eta _{\text {d}}\eta _{r0}E\{\exp (-|N_A-N_B|\tau /T_2)\} \nonumber&\\&= \frac{\eta _{\text {d}}\eta _{r0}\eta _{A}\eta _{B}}{\eta _{A}+\eta _{B}-\eta _{A}\eta _{B}} \times \left[ \frac{1}{1-e^{-\frac{\tau }{T_2}}(1-\eta _A)}+\frac{1}{1-e^{-\frac{\tau }{T_2}}(1-\eta _B)}-1\right] . \end{aligned}$$
(11)

Appendix B: Calculation of key rates dependent on temporal multiplexing \(m_{\text {t}}\)

Fig. 8
figure 8

Schematic of a QM used in protocols that incorporate both frequency (spatial) multiplexing and time multiplexing. Here, each QM stores \(m_{\text {s}} m_{\text {t}}\) photons and performs a frequency/time bin shift in the center for BSMs

The multimode AFC protocol (frequency multiplexing/spatial multiplexing scheme) in Sect. 3 was considered as temporal multiplexing \(m_{\text {t}}\) with \(m_{\text {t}}=1\), but it can be extended to the case of temporal multiplexing (\(m_{\text {t}}>1\)). A schematic of the QM when temporal multiplexing is incorporated is depicted in Fig. 8. It is necessary to store \(m_{\text {s}}m_{\text {t}}\) photons across \(m_{\text {t}}\) slots and match them accordingly.

$$\begin{aligned} Y_{11}^{{\text {QM}}}&= \frac{\mu \nu e^{-\mu -\nu }Y_{11}(\eta _A^{{\text {mm}}},\eta _B^{{\text {mm}}})}{m_{\text {t}}} \end{aligned}$$
(12)

Here, \(Y_{11}\) represents the success rate of the BSM, as described in Appendix 1. The success probability \(\eta _K^{{\text {mm}}}\) of the frequency-multiplexed and time-multiplexed S-BSM is given as follows:

$$\begin{aligned}&\eta _K^{{\text {mm}}} = 1-(1-Y_{11}(\eta _{{\text {ch}}}(L_{\text {K}})\eta _{\text {d}},\eta _{{\text {ent}}}\eta _{\text {d}}))^{m_{\text {s}}m_{\text {t}}} \quad (K=A,B). \end{aligned}$$
(13)

Here, in contrast to frequency/spatial multiplexing, temporal multiplexing results in a linear increase in \(O(m_{\text {t}})\), as \(m_{\text {t}}\) appears in the denominator of the rate Eq. 6, reducing the number of middle BSM attempts per unit time.

Fig. 9
figure 9

Protocol with temporal multiplexing. Simulations were performed with \(m_{\text {s}}=1\) in frequency multiplexing and \(m_{\text {t}}=1,10^2,10^4,10^6\) for the number of modes in temporal multiplexing

As illustrated in Fig. 9, as \(m_{\text {t}}\) increases, the plateau region expands; however, the overall rate decreases linearly with an increase in the time required to execute BSM, which is \(m_{\text {t}}\tau \). Additionally, optimizing the number of temporal modes \(m_{\text {t}}\) with consideration of the distance results in rate scaling of \(O(\sqrt{\eta _{{\text {ch}}}})\), as observed in the envelope.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizutani, Y., Horikiri, T. Nonlinear improvement of measurement-device-independent quantum key distribution using multimode quantum memory. Appl. Phys. B 129, 121 (2023). https://doi.org/10.1007/s00340-023-08063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08063-2

Navigation