Skip to main content
Log in

Thermal reconversion of oxidised lead white in mural paintings via a massicot intermediate

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Lead white, a mixture of cerussite (PbCO3) and hydrocerussite (2PbCO3·Pb(OH)2), is the most ancient and common white pigment used in mural paintings. However, it tends to blacken with time due to its oxidation to plattnerite (β-PbO2). Chemical treatments were used but they can put the pictorial layers supports at risks. Hereby, we address the possibility of thermally reconverting black plattnerite to white lead carbonates via a massicot (β-PbO) intermediate. We first investigated the conditions (temperature, time, and environment) in which pure powders react, before studying mural painting samples. Experiments were made in ovens and thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterisation were achieved. Litharge (α-PbO) and massicot were obtained from plattnerite, respectively, between 564 and 567 °C and at 650 °C. Lead carbonates, namely cerussite, hydrocerussite and plumbonacrite (3PbCO3·Pb(OH)2·PbO) formed from massicot in wet CO2 below 100 °C in a few hours. Lastly, when heating plattnerite-based mural painting samples, lead species reacted with binders and mortar, yielding massicot, plumbonacrite but also lead silicate and calcium lead oxides. This demonstrates the viability of thermal reconversion of darkened lead in mural, while raising concerns about the formation of several lead species by reaction with mural painting constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Reconversion is hereby used in the sense of a chemical reaction (conversion) taking place backward. Here the conversion is the oxidation to plattnerite; the reconversion is thus the formation of cerussite or hydrocerussite (white) or minium (red) from plattnerite (black) [5].

References

  1. E. W. Fitzhugh, ‘Red Lead and Minium’, in Artists’ Pigments: A Handbook of Their History and Characteristics, vol. 1, R. L. Feller, Ed. Washington: National Gallery of Art, 1986, pp. 109–139. [Online]. Available: https://www.nga.gov/content/dam/ngaweb/research/publications/pdfs/artists-pigments-vol1.pdf

  2. R. J. Gettens, H. Kühn, and W. T. Chase, ‘Lead White’, in Artists’ Pigments: A Handbook of Their History and Characteristics, vol. 2, A. Roy, Ed. Washington: National Gallery of Art, 1993, pp. 67–81. [Online]. Available: https://www.nga.gov/content/dam/ngaweb/research/publications/pdfs/artists-pigments-vol2.pdf

  3. C. d’Andrea di Cennini, ‘On the Character of White Lead. Chapter LVIIII’, in The Craftsman’s Handbook. The Italian ‘Il Libro dell’ Arte.’ Translated by Daniel V. Thompson, Jr, New York: Dover Publications, Inc, 1933, p. 34. [Online]. Available: http://www.noteaccess.com/Texts/Cennini/2.htm

  4. F. Baldinucci, ‘Biacca’, Vocabolario Toscano dell’Arte del Disegno. Firenze, p. 21, 1681. [Online]. Available: ark:/12148/bpt6k9762233v

  5. S.M. Lussier, G.D. Smith, A review of the phenomenon of lead white darkening and its conversion treatment. Stud. Conserv. 52(sup1), 41–53 (2007). https://doi.org/10.1179/sic.2007.52.Supplement-1.41

    Article  Google Scholar 

  6. E. Kotulanová, P. Bezdička, D. Hradil, J. Hradilová, S. Švarcová, T. Grygar, Degradation of lead-based pigments by salt solutions. J. Cult. Herit. 10(3), 367–378 (2009). https://doi.org/10.1016/j.culher.2008.11.001

    Article  Google Scholar 

  7. J.P. Petushkova, N.N. Lyalikova, Microbiological degradation of lead-containing pigments in mural paintings. Stud. Conserv. 31(2), 65 (1986). https://doi.org/10.2307/1506003

    Article  Google Scholar 

  8. M. Vagnini et al., Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: Study of Cimabue’s paintings in Assisi. Vib. Spectrosc. 98, 41–49 (2018). https://doi.org/10.1016/j.vibspec.2018.07.006

    Article  Google Scholar 

  9. M. Vagnini, R. Vivani, A. Sgamellotti, C. Miliani, Blackening of lead white: Study of model paintings. J. Raman Spectrosc. (2020). https://doi.org/10.1002/jrs.5879

    Article  Google Scholar 

  10. C. Aibéo, E. M. Castellucci, M. Matteini, B. Sacchi, A. Zoppi, and C. Lofrumento, ‘A micro-Raman spectroscopy study of the formation of lead dioxide from lead white’, in Art Technology: Sources and Methods, London, 2008, pp. 138–140.

  11. S. Aze, J.-M. Vallet, M. Pomey, A. Baronnet, O. Grauby, Red lead darkening in wall paintings: natural ageing of experimental wall paintings versus artificial ageing tests. Eur. J. Mineral. 19(6), 883–890 (2007). https://doi.org/10.1127/0935-1221/2007/0019-1771

    Article  ADS  Google Scholar 

  12. C. Prasartset, ‘Materials and techniques of Thai wall paintings: a comparative study of late 19th century murals and early-period murals’, in ICOM Committee for Conservation, 11th triennial meeting, Edinburgh, Scotland, 1-6 September 1996 : preprints, Edinburgh, 1996, pp. 430–434.

  13. D. Saunders, M. Spring, and C. Higgitt, ‘Colour change in red lead-containing paint films’, in ICOM Committee for Conservation, ICOM-CC : 13th Triennial Meeting, Rio de Janeiro, 22-27 September 2002 : preprints, London, 2002, pp. 455–463.

  14. S. Giovannoni, M. Matteini, A. Moles, Studies and developments concerning the problem of altered lead pigments in wall painting. Stud. Conserv. 35(1), 21–25 (1990). https://doi.org/10.1179/sic.1990.35.1.21

    Article  Google Scholar 

  15. M. Matteini and A. Moles, ‘Recupero di un pigmento modificato, la bianca di piombo, mediante un trattamento chemico’, in Metodo e Scienza, Firenze 23 giugno 1982 - 6 gennaio 1983, pp. 253–256.

  16. M. Matteini, ‘Ossidazione della Biacca in pitture murali. Metodi proposti per la riconversione del pigmento nelle pitture di A. Baldovinetti nella Chiesa di S. Miniato (Firenze)’, in Atti del convegno sul restauro delle opere d’arte. Firenze, 2–7 novembre 1976, Firenze, 1976, pp. 257–269; 527–529.

  17. I. Costantini et al., Darkening of lead- and iron-based pigments on late Gothic Italian wall paintings: Energy dispersive X-ray fluorescence, μ-Raman, and powder X-ray diffraction analyses for diagnosis: presence of β-PbO 2 (plattnerite) and α-PbO 2 (scrutinyite). J. Raman Spectrosc. 51(4), 680–692 (2020). https://doi.org/10.1002/jrs.5817

    Article  ADS  Google Scholar 

  18. M. Dneprovskaya, Analysis of medieval fresco pigments from the Georgian republic. MRS Proc. 267, 889 (1992). https://doi.org/10.1557/PROC-267-889

    Article  Google Scholar 

  19. M.B. Dneprovskaya, Medieval pigment and plaster technology in the XII-XIII century mural paintings at David-Garedji, Georgia. MRS Proc. 352, 727 (1995). https://doi.org/10.1557/PROC-352-727

    Article  Google Scholar 

  20. L. de Ferri, F. Mazzini, D. Vallotto, G. Pojana, In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy). Archaeol. Anthropol. Sci. 11(2), 609–625 (2019). https://doi.org/10.1007/s12520-017-0550-1

    Article  Google Scholar 

  21. V. Fassina, M. Mazza, and A. Naccari, ‘Indagini preliminari sulla tecnica pittorica e sullo stato di conservazione dei dipinti murali della Chiesa della Difesa di Vigo di Cadore (BL)’, in Scienza e beni culturali, 21, Bressanone, 2005, pp. 775–786.

  22. L. Chupin, ‘Rôle de l’environnement dans le noircissement des peintures au blanc de plomb’, Master thesis, Centre Interrégional de Conservation et Restauration du Patrimoine, Marseille, 2011.

  23. C. Degrigny et al., Technical study of Germolles’ wall paintings: the inputof imaging technique. Virtual Archaeol. Rev. 7(15), 1 (2016). https://doi.org/10.4995/var.2016.5831

    Article  Google Scholar 

  24. M. Koller, H. Leitner, H. Paschinger, Reconversion of altered lead pigments in alpine mural paintings. Stud. Conserv. 35(1), 15–20 (1990). https://doi.org/10.1179/sic.1990.35.1.15

    Article  Google Scholar 

  25. J. Trovão, F. Gil, L. Catarino, F. Soares, I. Tiago, A. Portugal, Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. Int. Biodeterior. Biodegrad. 149, 104933 (2020). https://doi.org/10.1016/j.ibiod.2020.104933

    Article  Google Scholar 

  26. P. Bøllingtoft and M. C. Christensen, ‘Early Gothic wall paintings: an investigation of painting techniques and materials of 13th-century mural paintings in a Danish village church’, in ICOM Committee for Conservation tenth triennial meeting, Washington, DC, 22-27 August 1993: preprints, Paris, 1993, pp. 531–535.

  27. R. H. Brill, C. Felker-Dennis, H. Shirahata, and E. C. Joel, ‘Lead Isotope Analyses of Some Chinese and Central Asian Pigments’, in Conservation of Ancient Sites on the Silk Road Los Angeles, Los Angeles, 1997, pp. 369–378. [Online]. Available: https://www.cmog.org/sites/default/files/collections/9D/9DB363B9-B3B8-4C29-8529-A3D12D6B3775.pdf

  28. S. Daniilia et al., Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination. J. Cult. Herit. 1(2), 91–110 (2000). https://doi.org/10.1016/S1296-2074(00)00164-3

    Article  Google Scholar 

  29. M. Matteini and A. Moles, ‘The Reconversion of Oxidised White Lead in Mural Paintings: A Control after a Five Year Period’, in Preprints, Ottawa, 1981, vol. 1, p. 81/15/ 1–8.

  30. M. Matteini, A. Moles, and S. Giovannoni, ‘The reconversion of Oxidised white lead in the paintings by Signorelli in the Abbey of Monteoliveto Maggiore. Study of the phenomenon and preliminary applications’, in Scientific methodologies applied to works of art, Florence, 1986, pp. 113–115.

  31. S. Aze, P. Delaporte, J.-M. Vallet, V. Detalle, O. Grauby, A. Baronnet, Towards the restoration of darkened red lead containing mural paintings: A preliminary study of the β-PbO2 to Pb3O4 reversion by laser irradiation. Proc. Int. Conf. LACONA VII Madrid 21(09), 11–13 (2007). https://doi.org/10.1201/9780203882085

    Article  Google Scholar 

  32. S. Aze, J.-M. Vallet, V. Detalle, and O. Grauby, ‘Reversion of darkened red lead-containing wall paintings by means of cw-laser irradiation: In situ tests and first application’, Lasers Conserv. Artworks VIII, p. 129, 2010.

  33. T. de Seauve et al., Continuous wave laser thermal restoration of Oxidised lead-based pigments in mural paintings. Appl. Phys. B 127(12), 162 (2021). https://doi.org/10.1007/s00340-021-07702-w

    Article  ADS  Google Scholar 

  34. P. Bromblet, M. Labouré, G. Orial, Diversity of the cleaning procedures including laser for the restoration of carved portals in France over the last 10 years. J. Cult. Herit. 4, 17–26 (2003). https://doi.org/10.1016/S1296-2074(02)01222-0

    Article  Google Scholar 

  35. C. Rodriguez-Navarro et al., Laser cleaning of stone materials: an overview of current research. Stud. Conserv. 48(sup1), 65–82 (2003). https://doi.org/10.1179/sic.2003.48.Supplement-1.65

    Article  Google Scholar 

  36. S. Siano et al., Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A 106(2), 419–446 (2012). https://doi.org/10.1007/s00339-011-6690-8

    Article  ADS  Google Scholar 

  37. S. Aze, J.-M. Vallet, A. Baronnet, O. Grauby, The fading of red lead pigment in wall paintings: tracking the physico-chemical transformations by means of complementary micro-analysis techniques. Eur. J. Mineral. 18(6), 835–843 (2006). https://doi.org/10.1127/0935-1221/2006/0018-0835

    Article  ADS  Google Scholar 

  38. P. Taylor, V.J. Lopata, Stability and solubility relationships between some solids in the system PbO–CO2–H2O. Can. J. Chem. 62(3), 395–402 (1984). https://doi.org/10.1139/v84-070

    Article  Google Scholar 

  39. J.R. Clarke, J.E. Greene, Reactively evaporated photoconductive PbO: phase transformations induced by water vapor. Thin Solid Films 66(3), 339–349 (1980). https://doi.org/10.1016/0040-6090(80)90387-9

    Article  ADS  Google Scholar 

  40. W. Mu et al., Adsorption of CO2 on PbO at ambient temperature. Appl. Surf. Sci. 258(2), 950–954 (2011). https://doi.org/10.1016/j.apsusc.2011.09.034

    Article  ADS  Google Scholar 

  41. M.I. Cooper, P.S. Fowles, C.C. Tang, Analysis of the laser-induced discoloration of lead white pigment. Appl. Surf. Sci. 201(1–4), 75–84 (2002). https://doi.org/10.1016/S0169-4332(02)00499-3

    Article  ADS  Google Scholar 

  42. R. Bruder, D. L’Hermite, A. Semerok, L. Salmon, V. Detalle, Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis. Spectrochim. Acta Part B At. Spectrosc. 62(12), 1590–1596 (2007). https://doi.org/10.1016/j.sab.2007.10.031

    Article  ADS  Google Scholar 

  43. T. Stratoudaki, A. Manousaki, K. Melesanaki, V. Zafiropulos, G. Orial, Study on the discolouration of pigments induced by laser irradiation. Rev. Métallurgie 98(9), 795–801 (2001). https://doi.org/10.1051/metal:2001125

    Article  Google Scholar 

  44. V. Zafiropulos, T. Stratoudaki, A. Manousaki, K. Melesanaki, G. Orial, Discoloration of pigments induced by laser irradiation. Surf. Eng. 17(3), 249–253 (2001). https://doi.org/10.1179/026708401101517773

    Article  Google Scholar 

  45. P. Pouli, D.C. Emmony, C.E. Madden, I. Sutherland, Analysis of the laser-induced reduction mechanisms of medieval pigments. Appl. Surf. Sci. 173(3–4), 252–261 (2001). https://doi.org/10.1016/S0169-4332(00)00909-0

    Article  ADS  Google Scholar 

  46. M. Chappé, J. Hildenhagen, K. Dickmann, M. Bredol, Laser irradiation of medieval pigments at IR, VIS and UV wavelengths. J. Cult. Herit. 4, 264–270 (2003). https://doi.org/10.1016/S1296-2074(02)01206-2

    Article  Google Scholar 

  47. G.L. Clark, N.C. Schieltz, T.T. Quirke, A new study of the preparation and properties of the higher oxides of lead. J. Am. Chem. Soc. 59(11), 2305–2308 (1937). https://doi.org/10.1021/ja01290a063

    Article  Google Scholar 

  48. E.M. Otto, Equilibrium pressures of oxygen over oxides of lead at various temperatures. J. Electrochem. Soc. 113(6), 525 (1966). https://doi.org/10.1149/1.2424016

    Article  ADS  Google Scholar 

  49. S. Kumar, M. Sharon, S.R. Jawalekar, Preparation of a thin film of Pb3O4 by thermal treatment of PbO2 film. Thin Solid Films 195(1–2), 273–278 (1991). https://doi.org/10.1016/0040-6090(91)90278-6

    Article  ADS  Google Scholar 

  50. D.A. Ciomartan, R.J.H. Clark, L.J. McDonald, M. Odlyha, Studies on the thermal decomposition of basic lead(II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. J. Chem. Soc. Dalton Trans. 18, 3639–3645 (1996). https://doi.org/10.1039/dt9960003639

    Article  Google Scholar 

  51. V.V. Aleksandrov, V.V. Boldyrev, V.V. Marusin, V.G. Morozov, V.S. Solovjev, T.M. Rozhentseva, Effect of heating rate on the thermal decomposition of lead dioxide. J. Therm. Anal. 13(2), 205–212 (1978). https://doi.org/10.1007/BF01912292

    Article  Google Scholar 

  52. H.A. Wriedt, The O−Pb (Oxygen-Lead) system. J. Phase Equilibria 9(2), 106–127 (1988). https://doi.org/10.1007/BF02890543

    Article  Google Scholar 

  53. K. Gavrichev, A. Bolshakov, D. Kondakov, A. Khoroshilov, S. Denisov, Thermal transformations of lead oxides. J. Therm. Anal. Calorim. 92(3), 857–863 (2008). https://doi.org/10.1007/s10973-007-8590-x

    Article  Google Scholar 

  54. D. Risold, J.-I. Nagata, R.O. Suzuki, Thermodynamic description of the Pb-O system. J. Phase Equilibria 19(3), 213–233 (1998). https://doi.org/10.1361/105497198770342238

    Article  Google Scholar 

  55. C. Real, M. Alcala, J. Criado, Correlation between the structural defects induced by ball-milling of Pb3O4 and the structure of PbO yielded from its thermal decomposition. Solid State Ion. 63–65, 702–706 (1993). https://doi.org/10.1016/0167-2738(93)90183-4

    Article  Google Scholar 

  56. P. Boher, P. Garnier, J.R. Gavarri, A.W. Hewat, Monoxyde quadratique PbOα(I): description de la transition structurale ferroélastique. J. Solid State Chem. 57(3), 343–350 (1985). https://doi.org/10.1016/0022-4596(85)90197-5

    Article  ADS  Google Scholar 

  57. R.J. Hill, Refinement of the structure of orthorhombic PbO (massicot) by Rietveld analysis of neutron powder diffraction data. Acta Crystallogr. C 41(9), 1281–1284 (1985). https://doi.org/10.1107/S0108270185007454

    Article  Google Scholar 

  58. F. Platel, AntiSecos. MetGen, 2014.

  59. T. Mendivil-Reynoso et al., Synthetic plumbonacrite thin films grown by chemical bath deposition technique. Chalcogenide Lett. 10(1), 11–17 (2013)

    Google Scholar 

  60. T. Mendivil-Reynoso, L.P. Ramírez-Rodríguez, R. Ochoa-Landín, R. Ramirez-Bon, S.J. Castillo, Synthesis and thermal annealing of plumbonacrite layers deposited by chemical bath technique. Mater. Today Commun. 25, 101676 (2020). https://doi.org/10.1016/j.mtcomm.2020.101676

    Article  Google Scholar 

  61. F. Vanmeert, G. Van der Snickt, K. Janssens, Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting. Angew. Chem. 127(12), 3678–3681 (2015). https://doi.org/10.1002/ange.201411691

    Article  ADS  Google Scholar 

  62. V. Gonzalez et al., Unraveling the composition of rembrandt’s impasto through the identification of unusual plumbonacrite by multimodal X-ray diffraction analysis. Angew. Chem. Int. Ed. 58(17), 5619–5622 (2019). https://doi.org/10.1002/anie.201813105

    Article  Google Scholar 

  63. D.F. Haacke, P.A. Williams, Stability of plumbonacrite. J. Inorg. Nucl. Chem. 43(2), 406 (1981). https://doi.org/10.1016/0022-1902(81)90036-1

    Article  Google Scholar 

  64. A. Mendoza-Flores, M. Villalobos, T. Pi-Puig, N.V. Martínez-Villegas, Revised aqueous solubility product constants and a simple laboratory synthesis of the Pb(II) hydroxycarbonates: plumbonacrite and hydrocerussite. Geochem. J. 51(4), 315–328 (2017). https://doi.org/10.2343/geochemj.2.0471

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work benefited from a state fund, managed by the french ANR as part of the France 2030 investements (ANR-17-EURE-0021 – École Universitaire de Recherche Paris Seine Humanités, Création, Patrimoine – Fondation des sciences du patrimoine). The authors wish to acknowledge the French Ministry of Culture and Communication for financial support and the French Fondation des Sciences du Patrimoine for their financial support to the RECONVERT 2 project. The authors would also like to thank Kevin Ginestar from SCCME (CEA Saclay) for the help in the TGA and oven trials, Vasile Heresanu from CINaM (Aix-Marseille Université) for the µ-XRD experiments, Sébastien Aze (Sinopia) for helping in the preparation of mural painting samples, and Xueshi Bai for the discussion and advises throughout the RECONVERT project.

Author information

Authors and Affiliations

Authors

Contributions

TS wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Théa de Seauve.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Seauve, T., Bosonnet, S., Grauby, O. et al. Thermal reconversion of oxidised lead white in mural paintings via a massicot intermediate. Appl. Phys. B 129, 137 (2023). https://doi.org/10.1007/s00340-023-08060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08060-5

Navigation