Skip to main content
Log in

Theoretical study of diode pumped intracavity backward optical parametric oscillator based on periodically poled lithium niobate

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a diode pumped mid-IR laser based on a singly resonant intracavity backwards optical parametric oscillator (SR IC-BOPO) is proposed and a simulation model is established. The model takes into account light emission from a laser crystal (e.g., Nd:YVO4), a SR IC-BOPO from a periodically poled nonlinear crystal (e.g., periodically poled lithium niobate (PPLN)), linear loss resulting from optical components, nonlinear loss due to the pump depletion in the BOPO process, thermal lens effect in the laser crystal, and optical mode overlapping between pump, signal and idler beam in PPLN nonlinear crystal. It is shown that the proposed mid-IR laser is capable of generating continuous wave (CW), narrow linewidth, mid-IR light, ranging from 2.1 to 4.5 μm, by employing PPLN with the fifth-order quasi-phase matching (QPM). It is found that a mid-IR laser with an output power as high as 0.47 W can be achieved using a 10 W 808 nm pump laser diode and PPLN crystal with the fifth-order QPM. To the best of our knowledge, this is the first time that a manufacturable SR IC-BOPO is modeled using PPLN, while also taking into account the nonlinear depletion losses in the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are available upon request.

References

  1. J. Randers, U. Goluke, An earth system model shows self-sustained thawing of permafrost even if all man-made GHG emissions stop in 2020. Sci. Rep. 10(1), 18456 (2020)

    Article  ADS  Google Scholar 

  2. D. Popa, F. Udrea, Towards Integrated mid-infrared gas sensors. Sensors 19(9), 2076 (2019)

    Article  ADS  Google Scholar 

  3. L. Joly, V. Zéninari, T. Decarpenterie, J. Cousin, B. Grouiez, D. Mammez, G. Durry, M. Carras, X. Marcadet, B. Parvitte, Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere. Laser Phys. 21(4), 805–812 (2011)

    Article  ADS  Google Scholar 

  4. L. Mei, M. Brydegaard, Continuous-wave differential absorption lidar. Laser Photon. Rev. 9(6), 629–636 (2015)

    Article  ADS  Google Scholar 

  5. G.A. Wagner, D.F. Plusquellic, Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm. Appl. Opt. 55(23), 6292–6310 (2016)

    Article  ADS  Google Scholar 

  6. L. Mei, P. Guan, Z. Kong, Remote sensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique. Opt. Express 25(20), A953–A962 (2017)

    Article  ADS  Google Scholar 

  7. I. Esquivias, A. Consoli, M. Krakowski, M. Faugeron, G. Kochem, M. Traub, J. Barbero, P. Fiadino, X. Ai, J. Rarity, M. Quatrevalet, and G. Ehret, High-brightness all semiconductor laser at 1.57 μm for space-borne lidar measurements of atmospheric carbon dioxide: device design and analysis of requirements. Proc. SPIE 9135 (2014)

  8. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling, Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B 90(3), 593–608 (2008)

    Article  ADS  Google Scholar 

  9. S. Yakovlev, S. Sadovnikov, O. Kharchenko, N. Kravtsova, Remote sensing of atmospheric methane with IR OPO lidar system. Atmosphere 11(1), 70 (2020)

    Article  ADS  Google Scholar 

  10. Z. Du, S. Zhang, J. Li, N. Gao, K. Tong, Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review. Appl. Sci. 9(2), 338 (2019)

    Article  Google Scholar 

  11. M. Razeghi, High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices. SPIE Conf. Proc. 11296, 112961C-112961C–15 (2020)

    Google Scholar 

  12. S. Borri, G. Insero, G. Santambrogio, D. Mazzotti, F. Cappelli, I. Galli, G. Galzerano, M. Marangoni, P. Laporta, V. Di Sarno, L. Santamaria, P. Maddaloni, P. De Natale, High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers. Appl. Phys. B 125(1), 18 (2019)

    Article  ADS  Google Scholar 

  13. Y.F. Peng, X.B. Wei, G. Xie, J.R. Gao, D.M. Li, W.M. Wang, A high-power narrow-linewidth optical parametric oscillator based on PPMgLN. Laser Phys. 23(5), 55405 (2013)

    Article  ADS  Google Scholar 

  14. J. Zhao, P. Cheng, F. Xu, X. Zhou, J. Tang, Y. Liu, G. Wang, Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO:PPLN at 3.68 µm. Appl. Sci. 8(8), 1345 (2018)

    Article  Google Scholar 

  15. K. Wang, M. Gao, S. Yu, J. Ning, Z. Xie, X. Lv, G. Zhao, S. Zhu, A compact and high efficiency intracavity OPO based on periodically poled lithium niobate. Sci. Rep. 11(1), 5079 (2021)

    Article  ADS  Google Scholar 

  16. S.E. Harris, Proposed backward wave oscillation in the infrared. Appl. Phys. Lett. 9(3), 114–116 (1966)

    Article  ADS  Google Scholar 

  17. C. Canalias, V. Pasiskevicius, Mirrorless optical parametric oscillator. Nat. Photonics 1(8), 459–462 (2007)

    Article  ADS  Google Scholar 

  18. R.S. Coetzee, A. Zukauskas, C. Canalias, V. Pasiskevicius, Low-threshold, mid-infrared backward-wave parametric oscillator with periodically poled Rb:KTP. APL Photonics 3(7), 71302 (2018)

    Article  Google Scholar 

  19. Y.J. Ding, J.B. Khurgin, Backward optical parametric oscillators and amplifiers. IEEE J. Quantum Electron. 32(9), 1574–1582 (1996)

    Article  ADS  Google Scholar 

  20. R.W. Boyd, Nonlinear Optics (Academic, London, 2020)

    Google Scholar 

  21. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)

    Article  ADS  Google Scholar 

  22. B. Boulanger, I. Rousseau, J.P. Feve, M. Maglione, B. Menaert, G. Marnier, Optical studies of laser-induced gray-tracking in KTP. IEEE J. Quantum Electron. 35(3), 281–286 (1999)

    Article  ADS  Google Scholar 

  23. M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, I. Breunig, Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt. Express 23(17), 21690–21705 (2015)

    Article  ADS  Google Scholar 

  24. B.N. Slautin, H. Zhu, V.Y. Shur, Submicron periodical poling in Z-cut lithium niobate thin films. Ferroelectrics 576(1), 119–128 (2021)

    Article  ADS  Google Scholar 

  25. Y.-F. Chen, Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture. IEEE J. Quantum Electron. 35(2), 234–239 (1999)

    Article  ADS  Google Scholar 

  26. P. Sen, P.K. Sen, R. Bhatt, S. Kar, V. Shukla, K.S. Bartwal, The effect of MgO doping on optical properties of LiNbO3 single crystals. Solid State Commun. 129(11), 747–752 (2004)

    Article  ADS  Google Scholar 

  27. A. Godard, M. Guionie, J.-B. Dherbecourt, J.-M. Melkonian, M. Raybaut, Backward optical parametric oscillator threshold and linewidth studies. J. Opt. Soc. Am. B 39(2), 408–420 (2022)

    Article  ADS  Google Scholar 

  28. C.E. Minor, R.S. Cudney, Mirrorless optical parametric oscillation in bulk PPLN and PPLT: a feasibility study. Appl. Phys. B 123(1), 38 (2017)

    Article  ADS  Google Scholar 

  29. G. Rustad, G. Arisholm, Ø. Farsund, Effect of idler absorption in pulsed optical parametric oscillators. Opt. Express 19(3), 2815–2830 (2011)

    Article  ADS  Google Scholar 

  30. A. Fix, R. Wallenstein, Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis. J. Opt. Soc. Am. B 13(11), 2484–2497 (1996)

    Article  ADS  Google Scholar 

  31. W.P. Risk, Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses. J. Opt. Soc. Am. B 5(7), 1412–1423 (1988)

    Article  ADS  Google Scholar 

  32. P. Lax, B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960)

    Article  MATH  Google Scholar 

  33. Z. Du, J. Li, A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers II. High order numerical boundary conditions. J. Comput. Phys. 369, 125–147 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. O. Gayer, Z. Sacks, E. Galun, A. Arie, Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91(2), 343–348 (2008)

    Article  ADS  Google Scholar 

  35. L. Flannigan, T. Kashak, C.-Q. Xu, Study of fundamental wave depletion in intracavity second harmonic generation. Opt. Express 29(5), 6810–6823 (2021)

    Article  ADS  Google Scholar 

  36. R.C. Miller, Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5(1), 17–19 (1964)

    Article  ADS  Google Scholar 

  37. R.G. Smith, Theory of intracavity optical second-harmonic generation. IRRR J. Quantum Electron. 6(4), 215–223 (1970)

    Article  ADS  Google Scholar 

  38. V.N. Burakevich, V.A. Lisinetskii, A.S. Grabtchikov, A.A. Demidovich, V.A. Orlovich, V.N. Matrosov, Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion. Appl. Phys. B 86(3), 511–514 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Daniel Poitras from the NRC for helpful discussion and design of the AR and HR coatings, and Drs. Lewis and Emslie for the discussions on epitaxial growth techniques.

Funding

The Ontario Research Fund—Research Excellence (ORF-RE); NSERC Alliance; NSERC Discovery.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text.

Corresponding author

Correspondence to Chang-Qing Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kneller, J., Flannigan, L. & Xu, CQ. Theoretical study of diode pumped intracavity backward optical parametric oscillator based on periodically poled lithium niobate. Appl. Phys. B 129, 99 (2023). https://doi.org/10.1007/s00340-023-08045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08045-4

Navigation