Skip to main content

Advertisement

Log in

Analogy of harmonic modelocked pulses to trapped Brownian particles improves laser performance

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-repetition-rate ultrafast lasers are needed for diverse applications. Harmonic modelocking, where multiple identical, equidistant pulses circulate in the cavity, reaches beyond the practical limitations of reducing the cavity length. However, it suffers from stochastic deviations that manifest as supermodes in the radio-frequency spectrum and difficulties in maintaining the same harmonic state, often coupled with trade-offs in pulse energy, duration, or noise performance. Here, we first show that deviations in the temporal positions of the pulses contribute disproportionately more to the supermodes than deviations in their amplitudes. Then, we argue that these fluctuations are analogous to those of trapped Brownian particles. This analogy reveals that supermodes are suppressed by stronger spectral filtering, which corresponds to fluid viscosity, and higher pulse energy reduces the noise, akin to lower temperature. Guided by this intuitive picture, we construct a Yb-fibre laser incorporating strong filtering and high intracavity energies by limiting nonlinear polarisation evolution to a short section of ordinary fibre. The rest of the all-fibre cavity comprises polarisation-maintaining fibre, which additionally improves environmental robustness. We report record-high supermode suppression ratios, reaching 80 dB, excellent long-term and environmental stability, and pulse energy, duration, and noise characteristics that are similar to fundamentally modelocked lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.E. Hargrove, R.L. Fork, M.A. Pollack, Appl. Phys. Lett. 5, 4 (1964)

    Article  ADS  Google Scholar 

  2. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, Ö. Akçaalan, S. Yavaş, M.D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F.Ö. Ilday, Nature 537, 84 (2016)

    Article  ADS  Google Scholar 

  3. N. Ji, J.C. Magee, E. Betzig, Nat. Methods 5(2), 197–202 (2008). https://doi.org/10.1038/nmeth.1175

  4. B.W. Tilma, M. Mangold, C.A. Zaugg, S.M. Link, D. Waldburger, A. Klenner, A.S. Mayer, E. Gini, M. Golling, U. Keller, Light Sci. Appl. 4, e310 (2015)

    Article  ADS  Google Scholar 

  5. T.J. Kippenberg, A.L. Gaeta, M. Lipson, M.L. Gorodetsky, Science 361, 8083 (2018)

    Article  Google Scholar 

  6. B. Stern, X. Ji, Y. Okawachi, A.L. Gaeta, M. Lipson, Nature 562, 401 (2018)

    Article  ADS  Google Scholar 

  7. H.A. Haus, IEEE J. Quantum Electron. 11, 323 (1975)

    Article  ADS  Google Scholar 

  8. F. Quinlan, S. Gee, S. Ozhara, P.J. Delfyett, IEEE Photon. Technol. Lett. 19, 1221 (2007)

    Article  ADS  Google Scholar 

  9. F. Amrani, A. Niang, M. Salhi, A. Komarov, H. Leblond, F. Sanchez, Opt. Lett. 36, 4239 (2011)

    Article  ADS  Google Scholar 

  10. A. Hause, H. Hartwig, M. Böhm, F. Mitschke, Phys. Rev. A 78, 063817 (2008)

    Article  ADS  Google Scholar 

  11. R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat, Optica 3, 189 (2016)

    Article  ADS  Google Scholar 

  12. V.A. Ribenek, D.A. Korobko, A.A. Fotiadi, J.R. Taylor, Opt. Lett. 47, 5236 (2022)

    Article  ADS  Google Scholar 

  13. S. Zhou, D.G. Ouzounov, F.W. Wise, Opt. Lett. 31, 1041 (2006)

    Article  ADS  Google Scholar 

  14. B. Ortaç, A. Hideur, G. Martel, M. Brunel, Appl. Phys. B 81, 507 (2005)

    Article  ADS  Google Scholar 

  15. C. Lecaplain, P. Grelu, Opt. Express 21, 10897 (2013)

    Article  ADS  Google Scholar 

  16. J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, Z. Wei, Appl. Opt. 53, 5088 (2014)

    Article  ADS  Google Scholar 

  17. B. Piechal, T.M. Kardas, M. Pielach, Y. Stepanenko, Stable harmonic mode locking in all PM-Fiber Mamyshev oscillator. Conference on Lasers and Electro-optics, SW3R.4. https://doi.org/10.1364/CLEO_SI.2020.SW3R.4

  18. A.B. Grudinin, S. Gray, J. Opt. Soc. Am. B 14, 144 (1997)

    Article  ADS  Google Scholar 

  19. B. Ortaç, A. Hideur, M. Brunel, Opt. Lett. 29, 1995 (2004)

    Article  ADS  Google Scholar 

  20. R. Brown, Philos. Mag. 4, 161 (1827)

    Google Scholar 

  21. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  22. H. Haken, H. Sauermann, C. Schmid, H.D. Vollmer, Z. Phys. 206, 369 (1967)

    Article  ADS  Google Scholar 

  23. G. Volpe, D. Petrov, Phys. Rev. Lett 97, 210603 (2006)

    Article  ADS  Google Scholar 

  24. V.J. Matsas, T.P. Newson, M.N. Zervas, Opt. Commun. 92, 61 (1992)

    Article  ADS  Google Scholar 

  25. N.J. Doran, D. Wood, Opt. Lett. 13, 56 (1988)

    Article  ADS  Google Scholar 

  26. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Elsevier Inc., 2004)

    MATH  Google Scholar 

  27. F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W. Wise, Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  28. W.H. Renninger, A. Chong, F.W. Wise, Phys. Rev. A 82, 021805 (2010)

    Article  ADS  Google Scholar 

  29. W.H. Renninger, A. Chong, F.W. Wise, Opt. Express 19, 22496 (2011)

    Article  ADS  Google Scholar 

  30. B. Oktem, C. Ülgüdür, F.Ö. Ilday, Nat. Photon 4, 307 (2010)

    Article  Google Scholar 

  31. A. Chong, J. Buckley, W. Renninger, F. Wise, Opt. Express 14, 10095 (2006)

    Article  ADS  Google Scholar 

  32. M. Erkintalo, C. Aguergaray, A. Runge, N.G.R. Broderick, Opt. Express 20, 22669 (2012)

    Article  ADS  Google Scholar 

  33. M. Pielach, B. Piechal, J. Szczepanek, P. Kabacinski, Y. Stepanenko, IEEE Access 8, 145087 (2020)

    Article  Google Scholar 

  34. Ç. Şenel, R. Hamid, C. Erdoğan, M. Çelik, F.Ö. Ilday, Phys. Rev. Appl. 10, 1 (2018)

    Article  Google Scholar 

  35. D. Mortag, D. Wandt, U. Morgner, D. Kracht, J. Neumann, Opt. Express 19, 546 (2011)

    Article  ADS  Google Scholar 

  36. I.L. Budunoğlu, C. Ülgüdür, B. Oktem, F.Ö. Ilday, Opt. Lett. 34, 42916 (2009)

    Article  Google Scholar 

  37. K. Gürel, P. Elahi, L. Budunoğlu, Ç. Şenel, P. Paltani, F.Ö. Ilday, Appl. Phys. Lett. 105, 011111 (2014)

    Article  ADS  Google Scholar 

  38. P. Elahi, H. Kalaycıoğlu, Ö. Akçaalan, C. Ertek, K. Eken, F.Ö. Ilday, Opt. Lett. 43, 535 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ghaith Makey for support in the automatisation of the data acquisition. This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (SUPERSONIC and UniLase with grant agreements No. 966846 and No. 101055055, respectively) and TÜBİTAK (Grant agreement No. 20AG024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ömer Ilday.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributions of energy and position deviations to the supermode suppression ratio

Contributions of energy and position deviations to the supermode suppression ratio

The radio-frequency (RF) signal is the Fourier transform of the time signal. The RF trace, at frequency f in logarithmic scale, is

$$\begin{aligned} \text {RF} (f)&= 10 \log _{10} \left( C \times \vert {\tilde{P}} (f) \vert ^2 \right) \\\left|{\tilde{P}} (f)\right|^2&= \left|\frac{1}{T_\text {c}} \int _{0}^{T_\text {c}} \exp \left( - 2 \pi \text{i} \frac{n}{T_\text {c}} \tau \right) \sum _{j = 1}^{N} E_j u \left( \tau - \tau _j \right) \text {d} \tau \right|^2 . \end{aligned}$$
(A1)

Here, \({\tilde{P}} (f)\) is the Fourier transform of the photocurrent from the photodiode, C is a proportionality constant adding a vertical shift to the RF trace, \(T_{\textrm{c}}\) is the cavity round-trip time, n is a positive integer enumerating the maxima in the RF trace such that \(f_n = n / T_{\textrm{c}}\) represents all frequencies allowed by the periodicity of the cavity. Furthermore, \(\tau\) is the delay coordinate, N is the number of pulses in the cavity, \(E_j\) and \(\tau _j\) are the energy and temporal position of the \(j\)th pulse, respectively, and u describes the temporal profile of the electrical current pulse generated by the photodetector in response to an optical pulse as measured by the RF spectrum analyser. Approximating the electrical pulse shape u as a delta function leads to

$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2 = \left| \frac{1}{T_{\textrm{c}}} \sum _{j = 1}^{N} E_j \exp \left( - 2 \pi \text {i} \frac{n}{T_{\textrm{c}}} \tau _j \right) \right| ^2 \, . \end{aligned}$$
(A2)

With N identical pulses in the cavity (\(N\)th harmonic state), each with an energy E, and positioned equidistantly (\(\tau _j = jT_{\textrm{c}} /N\)), the Fourier transform becomes

$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2 = \left( \frac{NE}{T_{\textrm{c}}} \right) ^2, \end{aligned}$$
(A3)

if n/N is an integer, otherwise zero. The maxima in the RF trace at frequencies \(n/T_{\textrm{c}}\) other than integer multiples of \(N/T_{\textrm{c}}\) result from supermodes. The supermode-maxima only appear in case of deviations from the ideal pulse train. A relative (fractional) energy deviation of \(\delta _E\) in one pulse (e.g., the first pulse, \(j = 1\)) leads to

$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2&= \left( \frac{E}{T_{\textrm{c}}} \delta _\textrm{E} \right) ^2, \nonumber \\&\quad \text {if }n/N\text { is not an integer (at supermodes)}, \end{aligned}$$
(A4)
$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2&= \left( \frac{E}{T_{\textrm{c}}} \left( N + \delta _E \right) \right) ^2, \nonumber \\&\quad \text {if }n/N\text { is an integer (at the harmonic repetition rate).} \end{aligned}$$
(A5)

The supermode suppression ratio (SSR) (in logarithmic scale) due to the energy deviation is the ratio between Eqs. A4 and A5:

$$\begin{aligned} \text {SSR}&= 10 \log _{10} \left( \frac{ \vert {\tilde{P}} (N/T_{\textrm{c}}) \vert ^2}{\vert {\tilde{P}} (n/T_{\textrm{c}})\vert ^2} \right) = 10 \log _{10} \left( \left( \frac{N}{\delta _E} +1 \right) ^2 \right) \nonumber \\&\approx 20 \log _{10} \left( \left| \frac{N}{\delta _E} \right| \right), \end{aligned}$$
(A6)
$$\begin{aligned} \delta _E&= \frac{1}{N} \times 10^{- \frac{\text {SSR}}{20}} , \end{aligned}$$
(A7)

where n corresponds to the supermode for which the SSR is to be measured. In the case of a position deviation \(\delta _\tau\) in the first pulse, by linearizing with respect to \(\delta _\tau\), \(\vert {\tilde{P}} (f) \vert ^2\) becomes

$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2&\approx \left( 2\pi \frac{n}{T_\textrm{c}^2} \delta _\tau T_{\rm R} E\right) ^2=\left(\frac{E}{T_\textrm{c}}\right)^2\left( 2\pi \frac{n}{N} \delta _\tau \right) ^2,\nonumber \\&\quad \text {if }n/N\text { is not an integer (at supermodes)} \end{aligned}$$
(A8)
$$\begin{aligned} \left| {\tilde{P}} (f) \right| ^2&\approx \left( \frac{E}{T_{\textrm{c}}} \right) ^2 \left( \left( 2\pi \frac{n}{N} \delta _\tau \right) ^2 + N^2 \right) , \nonumber \\&\quad \text {if }n/N\text { is an integer.} \end{aligned}$$
(A9)

The resulting SSR then is again the ratio of Eqs. A8 and A9:

$$\begin{aligned} \text {SSR} &= 10 \log _{10} \left( \frac{ \vert {\tilde{P}} (N/T_{\textrm{c}}) \vert ^2}{\vert {\tilde{P}} (n/T_{\textrm{c}})\vert ^2} \right) = 10 \log _{10} \left( \frac{\left( \frac{E}{T_{\textrm{c}}} \right) ^2 \left( \left( 2\pi \frac{n}{N} \delta _\tau \right) ^2 + N^2 \right)}{\left(\frac{E}{T_\textrm{c}}\right)^2\left( 2\pi \frac{n}{N} \delta _\tau \right) ^2} \right) \nonumber \\&\approx 20 \log _{10} \left( \left| \frac{N^2}{2 \pi n} \frac{1}{\delta _\tau } \right| \right) , \end{aligned}$$
(A10)
$$\begin{aligned} \delta _\tau&= \frac{2\pi n}{N^2} \times 10^{-\frac{\text {SSR}}{20}} . \end{aligned}$$
(A11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laçin, M., Repgen, P., Şura, A. et al. Analogy of harmonic modelocked pulses to trapped Brownian particles improves laser performance. Appl. Phys. B 129, 46 (2023). https://doi.org/10.1007/s00340-023-07979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07979-z

Navigation