Skip to main content

Advertisement

Log in

Broadly tunable (402–535 nm) intracavity frequency-doubled Cr:LiSAF laser

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a low-cost and compact Cr:LiSAF laser system with ultrabroad tunability in the near infrared and visible. The system is pumped by two state-of-the-art 210 mW single-mode red diodes, and in continuous-wave (cw) lasing experiments, an output power up to 190 mW, a tuning range of 795–1103 nm, and a slope efficiency of 54% is achieved. Via intracavity frequency-doubling with beta-barium borate (BBO) crystals, a record cw second-harmonic tuning range continuously covering the spectral regions from violet to green (402–535 nm) is demonstrated. Despite the simple pump system, cw frequency-doubled power levels up to 17.5 mW could be reached at 422.5 nm, which corresponds to an optical-to-optical conversion efficiency of 4.2% and electrical-to-optical conversion efficiency of 1.4%. We believe that this compact, low-cost, and simplistic Cr:LiSAF laser system may be an attractive source for several applications including spectroscopy, atom cooling/trapping, and quantum optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. F.J. Duarte, Tunable lasers handbook (Academic Press, 1995)

    Google Scholar 

  2. M.J. Colles, C.R. Pidgeon, Tunable lasers. Reports Prog. Phys. 38(3), 329–460 (1975)

    ADS  Google Scholar 

  3. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, T.W. Hänsch, Design for a compact tunable Ti:sapphire laser. Opt. Lett. 20(3), 297 (1995)

    ADS  Google Scholar 

  4. U. Demirbas, Cr: Colquiriite lasers: current status and challenges for further progress. Prog Quantum Electron 68, 100227 (2019)

    Google Scholar 

  5. J.C. Walling, O.G. Peterson, H.P. Jenssen, R.C. Morris, E.W. Odell, Tunable alexandrite lasers. IEEE J Quantum Electron 16(12), 1302–1315 (1980)

    ADS  Google Scholar 

  6. R. Peters, C. Kränkel, K. Petermann, G. Huber, Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency. Opt. Express 15(11), 7075–7082 (2007)

    ADS  Google Scholar 

  7. V.G. Baryshevskii, M.V. Korzhik, A.E. Kimaev, M.G. Livshits, V.B. Pavlenko, M.L. Meil’man, B.I. Minkov, Tunable chromium forsterite laser in the near IR region. J. Appl. Spectrosc. 53, 675–676 (1990)

    ADS  Google Scholar 

  8. A. Sennaroglu, Broadly tunable Cr4+ -doped solid-state lasers in the near infrared and visible. Prog. Quantum Electron. 26, 287–352 (2002)

    ADS  Google Scholar 

  9. D. Welford, P.F. Moulton, Room-temperature operation of a Co:MgF2 laser. Opt. Lett. 13(11), 975–977 (1988)

    ADS  Google Scholar 

  10. U. Demirbas, J. Thesinga, E. Beyatli, M. Kellert, F.X. Kärtner, M. Pergament, Continuous-wave Tm:YLF laser with ultrabroad tuning (1772–2145 nm). Opt. Express 30(23), 41219–41239 (2022)

    ADS  Google Scholar 

  11. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, "Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers," in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optica Publishing Group, 2010), paper AMC2

  12. U. Demirbas, A. Sennaroglu, "Intracavity-pumped Cr2+: ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm," Opt. Lett. 31(15), 2293–2295 (2006)

  13. J. Kernal, V.V. Fedorov, A. Gallian, S.B. Mirov, V.V. Badikov, 3.9-4.8 mm gain-switched lasing of Fe:ZnSe at room temperature. Opt. Express 13(26), 10608–10615 (2005)

    ADS  Google Scholar 

  14. A. Sennaroglu, Y. Morova, Divalent (Cr2+), trivalent (Cr3+), and tetravalent (Cr4+) chromium ion-doped tunable solid-state lasers operating in the near and mid-infrared spectral regions. Appl. Phys. B Lasers Opt. 128(1), 1–25 (2022)

    ADS  Google Scholar 

  15. H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vamos, A. Schwarz, O. Pronin, J. Brons, X.T. Geng, G. Arisholm, M. Ciappina, V.S. Yakovlev, D.E. Kim, A.M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, F. Krausz, Third-generation femtosecond technology. Optica 1(1), 45–63 (2014)

    ADS  Google Scholar 

  16. U. Demirbas, I. Baali, "Power and efficiency scaling of diode pumped Cr:LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm," Opt. Lett. 40(20), 4615–4618 (2015)

  17. S.A. Payne, L.K. Smith, R.J. Beach, B.H.T. Chai, J.H. Tassano, L.D. DeLoach, W.L. Kway, R.W. Solarz, W.F. Krupke, Properties of Cr:LiSrAIF6 crystals for laser operation. Appl. Opt. 33(24), 5526–5536 (1994)

    ADS  Google Scholar 

  18. P.F. Moulton, Tunable solid-state lasers. Proc. IEEE 80(3), 348–364 (1992)

    ADS  Google Scholar 

  19. S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, H.W. Newkirk, Laser performance of LiSrAlF6:Cr3+. J. Appl. Phys. 66(3), 1051–1056 (1989)

    ADS  Google Scholar 

  20. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, "Low-cost, single-mode diode-pumped Cr:Colquiriite lasers," Opt. Express 17(16), 14374–14388 (2009).

  21. M. Stalder, B.H.T. Chai, M. Bass, Flashlamp pumped Cr:LiSrAlF6 laser. Appl. Phys. Lett. 58(3), 216–218 (1991)

    ADS  Google Scholar 

  22. P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. JOSA B 3(1), 125–133 (1986)

    ADS  Google Scholar 

  23. F. Druon, F. Balembois, P. Georges, New laser crystals for the generation of ultrashort pulses. Comptes Rendus Phys. 8(2), 153–164 (2007)

    ADS  Google Scholar 

  24. D. Klimm, G. Lacayo, P. Reiche, Growth of Cr : LiCaAlF6 and Cr : LiSrAlF6 by the Czochralski method. J. Cryst. Growth 210(4), 683–693 (2000)

    ADS  Google Scholar 

  25. U. Demirbas, S. Eggert, and A. Leitenstorfer, "Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: A minimal cost approach," J. Opt. Soc. Am. B Opt. Phys 29(8), 1894–1903 (2012)

  26. V. Kubecek, R. Quintero-Torres, J.C. Diels, Ultralow-pump-threshold laser diode pumped Cr : LiSAF laser. Adv. Lasers Syst. 5137, 43–47 (2002)

    Google Scholar 

  27. C. Ruppert, M. Betz, Generation of 30 femtosecond, 900–970 nm pulses from a Ti:sapphire laser far off the gain peak. Opt. Express 16(8), 5572 (2008)

    ADS  Google Scholar 

  28. J.C.E. Coyle, A.J. Kemp, J.-M. Hopkins, A.A. Lagatsky, Ultrafast diode-pumped Ti:sapphire laser with broad tunability. Opt. Express 26(6), 6826 (2018)

    ADS  Google Scholar 

  29. U. Demirbas, "Power scaling potential of continuous-wave Cr:LiSAF and Cr:LiCAF lasers in thin-disk geometry," Appl. Opt. 57(35), 10207–10217 (2018)

  30. U. Demirbas, R. Uecker, D. Klimm, J. Wang, Low-cost, broadly tunable (375–433 nm & 746–887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode. Appl. Opt. 51(35), 8440 (2012)

    ADS  Google Scholar 

  31. D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, "Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers," Opt. Express 20(21), 23422–23435 (2012).

  32. H. Maestre, A.J. Torregrosa, J. Capmany, Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave. Laser Phys. Lett. 10(3), 35806 (2013)

    Google Scholar 

  33. J.F. Pinto, L. Esterowitz, Unstable Cr : LiSAF laser resonator with a variable reflectivity output coupler. Appl. Opt. 37(15), 3272–3275 (1998)

    ADS  Google Scholar 

  34. J.F. Pinto, L. Esterowitz, G.H. Rosenblatt, Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region. IEEE J. Sel. Top. Quantum Electron. 1(1), 58–61 (1995)

    ADS  Google Scholar 

  35. B. Agate, A.J. Kemp, C.T.A. Brown, W. Sibbett, Efficient, high repetition-rate femtosecond blue source using a compact Cr : LiSAF laser. Opt. Express 10(16), 824–831 (2002)

    ADS  Google Scholar 

  36. B. Agate, E.U. Rafailov, W. Sibbett, S.M. Saltiel, K. Koynov, M. Tiihonen, S.H. Wang, F. Laurell, P. Battle, T. Fry, T. Roberts, E. Noonan, Portable ultrafast blue light sources designed with frequency doubling in KTP and KNbO3. Ieee J. Sel. Top. Quantum Electron. 10(6), 1268–1276 (2004)

    ADS  Google Scholar 

  37. B. Agate, E.U. Rafailov, W. Sibbett, S.M. Saltiel, P. Battle, T. Fry, E. Noonan, Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal. Opt. Lett. 28(20), 1963–1965 (2003)

    ADS  Google Scholar 

  38. F. Falcoz, F. Balembois, P. Georges, A. Brun, D. Rytz, All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser. Opt. Lett. 20(11), 1274–1276 (1995)

    ADS  Google Scholar 

  39. P. Laperle, K.J. Snell, A. Chandonnet, P. Galarneau, Tunable diode-pumped and frequency-doubled Cr:LiSAF lasers. Appl. Opt. 36(21), 5053–5057 (1997)

    ADS  Google Scholar 

  40. J.M. Eichenholz, M. Richardson, G. Mizell, Diode pumped, frequency doubled LiSAF microlaser. Opt. Commun. 153(4–6), 263–266 (1998)

    ADS  Google Scholar 

  41. S. Makio, H. Matsumoto, A. Miyamoto, M. Sato, T. Sasaki, Low-noise blue light generation of intracavity frequency-doubled LD-pumped Cr:LiSAF laser by single-mode method. Electr. Eng. Japan 120–C(7), 910–915 (2022)

    Google Scholar 

  42. S. Makio, M. Sato, T. Sasaki, High-power, continuous-wave and blue light generation by intracavity frequency doubling of a Cr:LiSrAlF6 laser. Jpn J. Appl. Phys, Part 1 Regul. Pap. Short Notes Rev. Pap 40(4), 2278–2281 (2001)

    Google Scholar 

  43. S. Makio, T. Miyai, M. Sato, T. Sasaki, 67-mW continuous-wave blue light generation by intracavity frequency doubling of a diode pumped Cr:LiSrAlF6 laser. Jpn. J. Appl. Phys. 39, 6539–6541 (2000)

    ADS  Google Scholar 

  44. R. Scheps, J.F. Myers, H.B. Serreze, A. Rosenberg, R.C. Morris, M. Long, Diode-pumped Cr:LiSrAlF6 laser. Opt. Lett. 16(11), 820–822 (1991)

    ADS  Google Scholar 

  45. M. F. Mekteplioglu, Y. Ozturk, F. X. Kärtner, and U. Demirbas, "Tunable Q-switched mode-locked Cr:LiSAF laser," Opt. Commun. 488, 126836 (2021)

  46. U. Demirbas, Off-surface optic axis birefringent filters for smooth tuning of broadband lasers. Appl. Opt. 56(28), 7815–7825 (2017)

    ADS  Google Scholar 

  47. U. Demirbas, F.X. Kärtner, M. Pergament, Cavity-dumped nanosecond Cr:LiSAF laser in the 985–1030 nm region for versatile seeding of Yb-based amplifiers. Appl. Phys. B Lasers Opt. 128(2), 1–13 (2022)

    Google Scholar 

  48. U. Demirbas, J. Thesinga, M. Kellert, S. Reuter, B. Sumpf, M. Pergament, F.X. Kärtner, Mode-locked Cr:LiSAF laser far off the gain peak: tunable sub-200-fs pulses near 1 µm. Appl. Opt 60(29), 9054–9061 (2021)

    ADS  Google Scholar 

  49. J.A. Caird, S.A. Payne, P.R. Staver, A.J. Ramponi, L.L. Chase, W.F. Krupke, Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser. IEEE J. Quantum Electron. 24(6), 1077–1099 (1988)

    ADS  Google Scholar 

  50. A. Sennaroglu, Classification of power-degrading mechanisms in an optically pumped four-level laser: an analytical approach. J. Opt. Soc. Am. B 36(8), 2202–2209 (2019)

    ADS  Google Scholar 

  51. D.N. Nikogosyan, Beta barium borate (BBO). Appl. Phys. A 52(6), 359–368 (1991)

    ADS  Google Scholar 

  52. L.S. Cruz, F.C. Cruz, External power-enhancement cavity versus intracavity frequency doubling of Ti : sapphire lasers using BIBO. Opt. Express 15(19), 11913–11921 (2007)

    ADS  Google Scholar 

  53. M. Thorhauge, J.L. Mortensen, P. Tidemand-Lichtenberg, P. Buchhave, Tunable intra-cavity SHG of CW Ti: Sapphire lasers around 785 nm and 810 nm in BiBO-crystals. Opt. Express 14(6), 2283–2288 (2006)

    ADS  Google Scholar 

  54. U. Demirbas, I. Baali, D. A. E. Acar, A. Leitenstorfer, "Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet," Opt. Express 23(7), 8901–8909 (2015)

  55. H. Maestre, A. J. Torregrosa, J. Capmany, "Tunable blue-violet Cr3+:LiCAF + BiBO compact laser," Laser Phys. 25(3), 035401 (2015)

Download references

Acknowledgements

We thank Serdar Okuyucu for providing the room-temperature emission spectra data for Cr:LiSAF.

Funding

Scientific and Technological Research Council of Turkey (TÜBİTAK, 119E264).

Author information

Authors and Affiliations

Authors

Contributions

MFM, UD, YO and MP: conceived the experiments. MFM: performed the experiments with assistance from UD. The data were analyzed by MFM and UD with input from YO, MP and FXK. The first draft of the manuscript is written by MFM: with contribution from UD. Input and feedback throughout the process was provided by YO, MP and FXK. All authors contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Mustafa Fetih Mekteplioglu or Umit Demirbas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekteplioglu, M.F., Ozturk, Y., Pergament, M. et al. Broadly tunable (402–535 nm) intracavity frequency-doubled Cr:LiSAF laser. Appl. Phys. B 129, 22 (2023). https://doi.org/10.1007/s00340-022-07966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07966-w

Navigation