Skip to main content
Log in

Mode-hop compensation for intracavity sensing via chip voltage in an external-cavity QCL

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we describe a technique to perform intracavity gas sensing by detecting changes in the QCL voltage. The influence of mode-hops is compensated by a data acquisition and processing based on a dual wavelength scanning. This allows to perform gas detection over the full cavity spectral range (\({1277}{\hbox { cm}^{-1}}-{1348}{\hbox { cm}^{-1}}\)) without the use of a mode-hop free setup. First results of measurement of the \(\hbox {CH}_{4}\) absorption spectrum are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Hemming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, J. Haub, 99 W mid-IR operation of a ZGP OPO at 25% duty cycle. Opt. Express 21, 10062–10069 (2013)

    Article  ADS  Google Scholar 

  2. P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, Efficient mid-infrared laser using 1.9 \(\mu\)m-pumped Ho:YAG and ZnGeP2 optical parametric oscillators. J. Opt. Soc. Am. B 17, 723–728 (2000)

    Article  ADS  Google Scholar 

  3. E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator. Opt. Express 18, 26475–26483 (2010)

    Article  ADS  Google Scholar 

  4. A.B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T.M. Benson, Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express 18, 26704–26719 (2010)

    Article  ADS  Google Scholar 

  5. O. Henderson-Sapir, J. Munch, D.J. Ottaway, Mid-infrared fiber lasers at and beyond 3.5 \(\mu\)m using dual-wavelength pumping. Opt. Lett. 39, 493–496 (2014)

    Article  ADS  Google Scholar 

  6. R.I. Woodward, M.R. Majewski, D.D. Hudson, S.D. Jackson, Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics 4(2), 020801 (2019)

    Article  ADS  Google Scholar 

  7. L.J. Olafsen, E.H. Aifer, I. Vurgaftman, W.W. Bewley, C.L. Felix, J.R. Meyer, D. Zhang, C.-H. Lin, S.S. Pei, Near-room-temperature mid-infrared interband cascade laser. Appl. Phys. Lett. 72(19), 2370–2372 (1998)

    Article  ADS  Google Scholar 

  8. I. Vurgaftman, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, J.R. Lindle, J. Abell, J.R. Meyer, Mid-infrared interband cascade lasers operating at ambient temperatures. New J. Phys. 11, 125015 (2009)

    Article  ADS  Google Scholar 

  9. Y. Yao, A. Hoffman, C. Gmachl, Mid-infrared quantum cascade lasers. Nat. Photonics 6, 432–439 (2012)

    Article  ADS  Google Scholar 

  10. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, S.G. Chu, A.Y. Cho, High power mid-infrared (5 \(\mu\)m) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68(26), 3680–3682 (1996)

    Article  ADS  Google Scholar 

  11. B.G. Lee, M.A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D.C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, J. Faist, Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 91(23), 231101 (2007)

    Article  ADS  Google Scholar 

  12. C.L. Felix, W.W. Bewley, I. Vurgaftman, J.R. Meyer, L. Goldberg, D.H. Chow, E. Selvig, Midinfrared vertical-cavity surface-emitting laser. Appl. Phys. Lett. 71(24), 3483–3485 (1997)

    Article  ADS  Google Scholar 

  13. A. Ikyo, I. Marko, K. Hild, A. Adams, S. Arafin, M.-C. Amann, S. Sweeney, Temperature stable mid-infrared GaInAsSb/GaSb Vertical Cavity Surface Emitting Lasers (VCSELs). Sci. Rep. 6, 19595 (2016)

    Article  ADS  Google Scholar 

  14. A. Grossel, V. Zéninari, B. Parvitte, L. Joly, D. Courtois, G. Durry, Quantum cascade laser spectroscopy of \({\text{ N}_2\text{ O }}\) in the 7.9 \(\mu\)m region for the in situ monitoring of the atmosphere. J. Quant. Spectrosc. Radiat. Transfer 109, 1845–1855 (2008)

    Article  ADS  Google Scholar 

  15. B. Grouiez, B. Parvitte, L. Joly, V. Zéninari, Alternative method for gas detection using pulsed quantum-cascade-laser spectrometers. Opt. Lett. 34, 181–3 (2009)

    Article  ADS  Google Scholar 

  16. B. Grouiez, V. Zéninari, L. Joly, B. Parvitte, Pulsed quantum-cascade-laser spectroscopy with intermediate-size pulses: Application to \({\text{ NH}_3}\) in the 10 \(\mu\)m region. Appl. Phys. B 100, 265–273 (2010)

    Article  ADS  Google Scholar 

  17. L. Joly, V. Zéninari, T. Decarpenterie, J. Cousin, B. Grouiez, D. Mammez, G. Durry, M. Carras, X. Marcadet, B. Parvitte, Continuous-wave quantum cascade lasers absorption spectrometers for trace gas detection in the atmosphere. Laser Phys. 21, 805–812 (2011)

    Article  ADS  Google Scholar 

  18. R. Vallon, B. Parvitte, L. Bizet, G. Naurois, B. Simozrag, G. Maisons, M. Carras, V. Zéninari, External cavity coherent quantum cascade laser array. Infrared Phys. Technol. 76, 03 (2016)

    Article  Google Scholar 

  19. L. Bizet, R. Vallon, B. Parvitte, M. Brun, G. Maisons, M. Carras, V. Zéninari, Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Appl. Phys. B 123, 04 (2017)

    Article  Google Scholar 

  20. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264(5158), 553–556 (1994)

    Article  ADS  Google Scholar 

  21. R. Maamary, X. Cui, E. Fertein, P. Augustin, M. Fourmentin, D. Dewaele, F. Cazier, L. Guinet, and W. Chen, “A quantum cascade laser-based optical sensor for continuous monitoring of environmental methane in Dunkirk (France),” Sensors (Switzerland), vol. 16, no. 224, 2016

  22. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl. Phys. B: Lasers Opt. 75(2–3), 343–350 (2002)

    Article  ADS  Google Scholar 

  23. R. Maulini, A. Lyakh, A. Tsekoun, M. Lane, T. Macdonald, R. Go, C.K.N. Patel, High power and efficiency quantum cascade laser systems for defense and security applications. Proc. SPIE 7483, 73250L (2009)

    Google Scholar 

  24. A. Mukherjee, S. Von der Porten, C.K.N. Patel, Standoff detection of explosive substances at distances of up to 150 m. Appl. Opt. 49(11), 2072–8 (2010)

    Article  ADS  Google Scholar 

  25. M. Papantonakis, R. Furstenberg, C. Kendziora, S. V. Stepnowski, J. Stepnowski, V. Nguyen, M. Rake, and R. A. McGill, “Stand-off detection of trace explosives by infrared photo-thermal spectroscopy,” 2009 IEEE Conference on Technologies for Homeland Security, HST 2009, vol. 7304, pp. 465–471, 2009

  26. J.H. Shorter, D.D. Nelson, J.B. McManus, M.S. Zahniser, D.K. Milton, Multicomponent breath analysis with infrared absorption using room-temperature quantum cascade lasers. IEEE Sens. J. 10(1), 76–84 (2010)

    Article  ADS  Google Scholar 

  27. D. Marchenko, J. Mandon, S. Cristescu, P. Merkus, F. Harren, Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide. Appl. Phys. B 111, 05 (2013)

    Article  Google Scholar 

  28. A. Reyes-Reyes, R.C. Horsten, H.P. Urbach, N. Bhattacharya, Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy. Anal. Chem. 87(1), 507–512 (2015). (PMID: 25506743)

    Article  Google Scholar 

  29. M. Brandstetter, T. Sumalowitsch, A. Genner, A. Posch, C. Herwig, A. Drolz, V. Fuhrmann, T. Perkmann, B. Lendl, Reagent-free monitoring of multiple clinically relevant parameters in human blood plasma using a mid-infrared quantum cascade laser based sensor system. Analyst 138, 05 (2013)

    Article  Google Scholar 

  30. W.B. Martin, S. Mirov, R. Venugopalan, Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum. Appl. Spectrosc. 59(7), 881–884 (2005). (PMID: 16053558)

    Article  ADS  Google Scholar 

  31. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, W. Petrich, Quantum cascade laser-based hyperspectral imaging of biological tissue. J. Biomed. Opt. 19(11), 1–6 (2014)

    Article  Google Scholar 

  32. N. Kröger-Lui, N. Gretz, K. Haase, B. Kränzlin, S. Neudecker, A. Pucci, A. Regenscheit, A. Schönhals, W. Petrich, Rapid identification of goblet cells in unstained colon thin sections by means of quantum cascade laser-based infrared microspectroscopy. Analyst 140, 2086–2092 (2015)

    Article  ADS  Google Scholar 

  33. K. Isensee, N. Kröger-Lui, A. Pucci, A. Schönhals, W. Petrich, Real-time mid-infrared imaging of living microorganisms. J. Biophotonics 9, 11 (2015)

    Google Scholar 

  34. J.B. McManus, P.L. Kebabian, M.S. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34, 3336–3348 (1995)

    Article  ADS  Google Scholar 

  35. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, X. Gao, Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuators, B Chem. 220, 1000–1005 (2015)

    Article  Google Scholar 

  36. D. Romanini, A. Kachanov, N. Sadeghi, F. Stoeckel, CW cavity ring down spectroscopy. Chem. Phys. Lett. 264(3), 316–322 (1997)

    Article  ADS  Google Scholar 

  37. G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 19(4), 565–607 (2000)

    Article  Google Scholar 

  38. V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 202, 171–202 (1999)

    Article  ADS  Google Scholar 

  39. A. Kachanov, A. Charvat, F. Stoeckel, Intracavity laser spectroscopy with vibronic solid-state lasers I Spectro temporal transient behavior of a Ti:sapphire laser. J. Opt. Soc. Am. B 11(12), 2412–21 (1994)

    Article  ADS  Google Scholar 

  40. S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, vol. 177 of Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications. Wiley & Sons, 1996

  41. G. Dudzik, K. Krzempek, K. Abramski, G. Wysocki, Solid-state laser intra-cavity photothermal gas sensor. Sens. Actuators, B Chem. 328, 129072 (2021)

    Article  Google Scholar 

  42. A. Grossel, V. Zéninari, L. Joly, B. Parvitte, G. Durry, D. Courtois, Photoacoustic detection of nitric oxide with a helmholtz resonant quantum cascade laser sensor. Infrared Phys. Technol. 51(2), 95–101 (2007)

    Article  ADS  Google Scholar 

  43. A. Grossel, V. Zéninari, L. Joly, B. Parvitte, D. Courtois, Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide. Appl. Phys. B: Lasers Opt. 88(3), 483–492 (2007)

    Article  ADS  Google Scholar 

  44. V. Zeninari, A. Grossel, L. Joly, T. Decarpenterie, B. Grouiez, B. Bonno, B. Parvitte, Photoacoustic spectroscopy for trace gas detection with cryogenic and room-temperature continuous-wave quantum cascade lasers. Cent. Eur. J. Phys. 8(2), 194–201 (2010)

    Google Scholar 

  45. M.C. Phillips, M.S. Taubman, Intracavity sensing via compliance voltage in an external cavity quantum cascade laser. Opt. Lett. 37, 2664–2666 (2012)

    Article  ADS  Google Scholar 

  46. M.C. Phillips, M.S. Taubman, J. Kriesel, Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals. Proc. SPIE 9370, 93700Z (2015)

    Article  ADS  Google Scholar 

  47. K.B. Rochford, A.H. Rose, Simultaneous laser-diode emission and detection for fiber-optic sensor applications. Opt. Lett. 20, 2105–2107 (1995)

    Article  ADS  Google Scholar 

  48. D. Hofstetter, M. Beck, J. Faist, Quantum-cascade-laser structures as photodetectors. Appl. Phys. Lett. 81(15), 2683–2685 (2002)

    Article  ADS  Google Scholar 

  49. T. Tsai, G. Wysocki, Active Wavelength Control of an External Cavity Quantum Cascade Laser. Appl. Phys. B: Lasers Opt. 109(3), 415–421 (2012)

    Article  ADS  Google Scholar 

  50. G. Wysocki, R.F. Curl, F.K. Tittel, R. Maulini, J.M. Bulliard, J. Faist, Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B: Lasers Opt. 81(6), 769–777 (2005)

    Article  ADS  Google Scholar 

  51. K. Liu, M.G. Littman, Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6(3), 117 (1981)

    Article  ADS  Google Scholar 

  52. H. Gong, Z. Liu, Y. Zhou, W. Zhang, Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching. Appl. Opt. 53(33), 7878 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Laurent Bizet acknowledges the Direction Générale de l’Armement and Région Grand-Est for his PhD funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Zeninari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Bizet: Presently at the Laboratoire d’Optique Appliquée, ENSTA Paris, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizet, L., Vallon, R., Parvitte, B. et al. Mode-hop compensation for intracavity sensing via chip voltage in an external-cavity QCL. Appl. Phys. B 128, 166 (2022). https://doi.org/10.1007/s00340-022-07882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07882-z

Navigation