Skip to main content
Log in

Effects of pre-pulse current on Ne-like Ar laser at 72.6 nm excited by capillary discharge

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

At present, research on the capillary discharge plasma Ne-like Ar 72.6 nm laser is insufficient, and additional experimental studies are supposed to determine the experimental parameters of the laser. Thus the effects of the pre-pulse current and the delay time between pre-pulse and main-pulse on the 72.6 nm laser are investigated in this paper. Before the experiments, the plasma parameters during the Z-pinch process were simulated. We employed 3.2 mm inner diameter capillaries with 35 cm and 45 cm lengths in the experiment. The experiment was conducted with the main-pulse current amplitude of 17.5 kA, the initial Ar pressure of 14–21 Pa, the pre-pulse and main-pulse delay time of 3.5–54.5 μs, and the pre-pulse current amplitude of 9.0–66.8 A. The intensity of the 72.6 nm laser was measured with different experimental parameters. The experimental results indicate that the intensity of 72.6 nm laser is maximum with the initial Ar pressure of 16 Pa, the pre-pulse and main-pulse delay time of 20 μs, and the pre-pulse current amplitude of 18.4 A in the 45 cm long capillary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.B. Da Silva, T.W. Barbee, R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R.A. London, D. Matthews, S. Mrowka, J.C. Moreno, Phys. Rev. Lett. 74, 3991 (1995)

    Article  ADS  Google Scholar 

  2. J. Miao, R.L. Sandberg, C. Song, IEEE J. Sel. Top. Quantum Electron. 18, 399 (2012)

    Article  ADS  Google Scholar 

  3. G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, T. Kawachi, J. Appl. Phys. 112, 13104 (2012)

    Article  Google Scholar 

  4. J.J. Rocca, D.C. Beethe, M.C. Marconi, Opt. Lett. 13, 565 (1988)

    Article  ADS  Google Scholar 

  5. J.J. Rocca, V.V. Shlyaptsev, F.G. Tomasel, O.D. Cortazar, H. Hartshorn, J. Hilla, Phys. Rev. Lett. 75, 1236 (1995)

    Article  ADS  Google Scholar 

  6. G. Niimi, Y. Hayashi, M. Nakajima, M. Watanabe, A. Okino, K. Horioka, E. Hotta, J. Phys. D 4, 2123 (2001)

    Article  ADS  Google Scholar 

  7. G. Tomassetti, A. Ritucci, A. Reale, L. Palladino, L. Reale, S.V. Kukhlevsky, F. Flora, L. Mezi, J. Kaiser, A. Faenov, T. Pikuz, Eur. Phys. J. D 19, 73 (2002)

    Article  ADS  Google Scholar 

  8. Y. Cheng, Y. Zhao, Q. Wang, Taniguch, Y. Hayashi, E. Hotta, Chin. Opt. Lett. 2, 658 (2004)

    ADS  Google Scholar 

  9. V.I. Ostashev, A.M. Gafarov, V.Y. Politov, A.N. Shushlebin, L.V. Antonova, O.N. Gilev, A.A. Safronov, A.V. Komissarov, Plasma Phys. Rep. 32, 489 (2006)

    Article  ADS  Google Scholar 

  10. D.E. Kim, D.S. Kim, A.L. Osterheld, J. Appl. Phys. 84, 5862 (1998)

    Article  ADS  Google Scholar 

  11. S. Jiang, Y. Zhao, Y. Xie, M. Xu, H. Cui, H. Wu, Y. Liu, Q. Xu, Q. Wang, Appl. Phys. B 109, 1 (2012)

    Article  ADS  Google Scholar 

  12. U.K. Muhammad, Y. Zhao, H. Tong, K.S. Muhammad, H. Cui, D. Zhao, Opt. Express 27, 16738 (2019)

    Article  ADS  Google Scholar 

  13. C.A. Tan, K.H. Kwek, Phys. Rev. A. 75, 043808 (2007)

    Article  ADS  Google Scholar 

  14. Y.P. Zhao, S. Jiang, Y. Xie, D.W. Yang, S.P. Teng, D.Y. Chen, Q. Wang, Opt. Lett. 36, 3458 (2011)

    Article  ADS  Google Scholar 

  15. Y.P. Zhao, T. Liu, S. Jiang, H.Y. Cui, Y.J. Ding, L.B. Li, Appl. Phys. B 122, 1 (2016)

    ADS  Google Scholar 

  16. Y.P. Zhao, Y.L. Cheng, B.B. Luan, Y.C. Wu, Q. Wang, J. Phys. D 39, 342 (2006)

    Article  ADS  Google Scholar 

  17. Y. Hayashi, Y. Xiao, N. Sakamoto, H. Miyahara, G. Niimi, M. Watanabe, A. Okino, K. Horioka, E. Hotta, Jpn. J. Appl. Phys. 42, 5285 (2003)

    Article  ADS  Google Scholar 

  18. M. Shuker, A. Ben-kish, R.A. Nemirovsky, A. Fisher, A. Ron, Phys. Plasmas 13, 013102 (2006)

    Article  ADS  Google Scholar 

  19. Y.L. Cheng, B.H. Luan, Y.C. Wu, Y.P. Zhao, Q. Wang, W. Zheng, H. Peng, D. Yang, Acta Phys. Sin. 54, 4979 (2005)

    Article  Google Scholar 

  20. J.D. Huba, NRL plasma formulary (Naval Research Laboratory, Washington, 1998), pp. 28–29

    Google Scholar 

  21. Y.B. Zel’Dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967), pp. 29–44

    Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant numbers 61875045, 62005066).

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to the conception of the study; YB, YZ, BA performed the experiment; YB, YZ, DZ, HC contributed significantly to analysis and manuscript preparation; YB performed the data analyses and wrote the manuscript; LL, JL helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Yongpeng Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhao, Y., An, B. et al. Effects of pre-pulse current on Ne-like Ar laser at 72.6 nm excited by capillary discharge. Appl. Phys. B 128, 163 (2022). https://doi.org/10.1007/s00340-022-07873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07873-0

Navigation