Skip to main content

Advertisement

Log in

Digital holographic study of corona wind-assisted evaporation of hydrocarbon from a microliter well

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The present study aims to understand the evaporation dynamics of heavy hydrocarbon liquid (cyclohexane) from a circular well cavity under the influence of corona wind. The study explores the effect of corona wind on the modification of vapor phase transport and the evaporation rate from the circular well. Particle image velocimetry is used to characterize the velocity field of the corona wind generated by a needle and plate configuration. Digital holography interferometry is used to decipher the mole fraction distribution of the vapor cloud. Circular well cavities of radius 2.0, 2.5, and 4 mm are studied. The effect of corona wind on the evaporation of different sized well cavities increases with an increase in actuation voltage. The side wall of the cavities influences the distribution of the vapor cloud due to the interaction with the incoming corona wind. More than ten times enhancement of evaporation is observed at 10 kV excitation voltage setting of the corona wind generator. The corona jet-assisted evaporation can be very useful in thin-film evaporative cooling due to its simplicity in design and superior performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Narayanan, A.G. Fedorov, Y.K. Joshi, Nanoscale Microscale Thermophys. Eng. 13, 30–53 (2009)

    Article  ADS  Google Scholar 

  2. K.S. Eloyan, D.V. Zaitsev, J. Phys. Conf. Ser. 1105, 012084 (2018)

    Article  Google Scholar 

  3. D. Brutin, V. Starov, Chem. Soc. Rev. 47, 558–585 (2018)

    Article  Google Scholar 

  4. P. Kelly-Zion, C. Pursell, S. Vaidya, J. Batra, Colloids Surf. A Physicochem. Eng. Asp. 381, 31–36 (2011)

    Article  Google Scholar 

  5. P. Kelly-Zion, C.J. Pursell, N. Hasbamrer, B. Cardozo, K. Gaughan, K. Nickels, Int. J. Heat Mass Transf. 65, 165–172 (2013)

    Article  Google Scholar 

  6. P.L. Kelly-Zion, C.J. Pursell, R.S. Booth, A.N. VanTilburg, Int. J. Heat Mass Transf. 52, 3305–3313 (2009)

    Article  Google Scholar 

  7. S. Dehaeck, A. Rednikov, P. Colinet, Langmuir 30, 2002–2008 (2014)

    Article  Google Scholar 

  8. D. Shukla, P.K. Panigarhi, Appl Opt. 59, 5851–5863 (2020)

    Article  ADS  Google Scholar 

  9. D. Shukla, P.K. Panigrahi, Colloids Surf. A Physicochem. Eng. Asp. 629, 127391 (2021)

    Article  Google Scholar 

  10. Y. Asakawa, Nature 261, 220–221 (1976)

    Article  ADS  Google Scholar 

  11. S. Laohalertdecha, P. Naphon, S. Wongwises, Renew. Sust. Energ. Rev. 11, 858–876 (2007)

    Article  Google Scholar 

  12. V. Vancauwenberghe, P. Di Marco, D. Brutin, Colloids Surf. A Physicochem. Eng. Asp. 432, 50–56 (2013)

    Article  Google Scholar 

  13. K. Takano, I. Tanasawa, S. Nishio, Int. J. Heat Mass Transf. 37, 65–71 (1994)

    Article  Google Scholar 

  14. K. Takano, I. Tanasawa, S. Nishio, J. Enhanc, Heat Transf. 3, 73–81 (1996)

    Google Scholar 

  15. K. Takano, I. Tanasawa, S. Nishio, J.S.M.E. Int, J. Ser. B Fluids Therm. Eng. 38, 288–294 (1995)

    Article  Google Scholar 

  16. K. Takano, I. Tanasawa, S. Nishio, Int. Heat Transf. Conf. Digital Library (1990)

  17. A. Bateni, S. Laughton, H. Tavana, S. Susnar, A. Amirfazli, A. Neumann, J. Colloid Interface Sci. 283, 215–222 (2005)

    Article  ADS  Google Scholar 

  18. W. Deng, A. Gomez, Int. J. Heat Mass Transf. 54, 2270–2275 (2011)

    Article  Google Scholar 

  19. M. Gibbons, C. Howe, P. Di Marco, A. Robinson, J. Phys. Conf. Ser. 745, 032066 (2016)

    Article  Google Scholar 

  20. Y. Fan, J. Wang, Y. Huo, Z. Zuo, Proc. Int. Conf. Heat Transf. Fluid Flow. 135, 1 (2014)

    Google Scholar 

  21. H. Xu, J. Wang, J. Tian, Y. Huo, B. Li, D. Wang, W. Zhang, J. Yao, Exp. Therm. Fluid Sci. 126, 110378 (2021)

    Article  Google Scholar 

  22. O. Ahmedou, O. Rouaud, M. Havet, Food Bioproc. Tech. 2, 240–247 (2009)

    Article  Google Scholar 

  23. W. Cao, Y. Nishiyama, S. Koide, J. Food Eng. 62, 209–213 (2004)

    Article  Google Scholar 

  24. T.I. Goodenough, P.W. Goodenough, S.M. Goodenough, J. Food Eng. 80, 1233–1238 (2007)

    Article  Google Scholar 

  25. M. Robinson, I.E.E.J. Trans, Electr. Electron. Eng. IEEJ T. 80, 143–150 (1961)

    Google Scholar 

  26. L. Bin, R. Bennacer, A. Bouvet, Appl. Therm. Eng. 31, 3792–3798 (2011)

    Article  Google Scholar 

  27. B.K. Mishra, P. Panigrahi, Phys. Fluids. 32, 087112 (2020)

    Article  ADS  Google Scholar 

  28. A. Gupta, B.K. Mishra, P. Panigrahi, Phys. Fluids. 33, 117118 (2021)

    Article  ADS  Google Scholar 

  29. M. Takeda, H. Ina, S. Kobayashi, JosA. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  30. R.M. Goldstein, H.A. Zebker, C.L. Werner, Radio Sci. 23, 713–720 (1988)

    Article  ADS  Google Scholar 

  31. S. Ma, H. Gao, L. Wu, Appl. Opt. 47, 1350–1357 (2008)

    Article  ADS  Google Scholar 

  32. W. Gardiner Jr., Y. Hidaka, T. Tanzawa, Combust. Flame. 40, 213–219 (1981)

    Article  Google Scholar 

  33. G. Hassan, H. El-Kashef, B. El-Baradie, M. El-Labban, Opt. Mater. 5, 327–332 (1996)

    Article  ADS  Google Scholar 

  34. S. Karpov, I. Krichtafovitch, Excerpt from the Proceedings of the COMSOL Multiphysics User's Conference 2005 Boston (2005)

  35. F.W. Peek, Dielectric phenomena in high voltage engineering (McGraw-Hill Book Company, Incorporated, 1920)

    Google Scholar 

  36. N. A. Kaptsov, Gas discharge physics (In Russian), Moscow, P: OGIZ. (1947)

Download references

Acknowledgements

Authors acknowledge the support from Ministry of Electronics and Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

DS: data acquisition, data analysis, and writing—original draft. BKM: PIV measurement and data analysis. PKP: conceptualization, supervision, and writing—review & editing.

Corresponding author

Correspondence to Pradipta Kumar Panigrahi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, D., Mishra, B.K. & Panigrahi, P.K. Digital holographic study of corona wind-assisted evaporation of hydrocarbon from a microliter well. Appl. Phys. B 128, 123 (2022). https://doi.org/10.1007/s00340-022-07846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07846-3

Navigation