Skip to main content

Advertisement

Log in

Assessment of the Electrohydrodynamic Drying Process

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Industries using energy-intensive processes are being forced to explore ways for reducing their energy consumption. In the food industry, air drying is one of the more energy-consuming processes. To reduce the energy consumption during this operation, alternative processes should be investigated. One promising alternative consists in the electrohydrodynamic (EHD) enhancement of heat and mass transfer. This paper analyses the literature and describes the great potential of this innovative process based on the generation of an electric wind by a corona discharge. The main aspects of this technique are discussed and special emphasis is given on its benefit for food processes. The main part of this paper concerns experimental investigations carried out to assess the EHD enhancement on the drying process. An experimental set-up was designed to measure the weight losses on a food product submitted to an electrostatic field and to a cross air flow. Present results confirm that, for a low cross air velocity, the ionic wind leads to an enhancement of the drying rate. The best results are obtained for the smaller distance between the food surface and the corona electrode. Nevertheless, the process is less efficient for a high air velocity. The last part deals with a numerical model that was developed to evaluate the electric parameters and the flow field in turbulent regime. This model provides useful information on the coupled phenomena and permits to explain the experimental observations and to help in designing EHD drying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

surface (m2)

b :

ionic mobility (m2 V−1 s−1)

d :

food surface–electrode gap (m)

e :

edge of the wind tunnel (m)

E :

electric field (V m−1)

F e :

electric body force (C m−2 s−1)

g :

gravity (m s−2)

I :

electric current (A)

J :

current density (A m−2)

k :

turbulent kinetic energy (m2 s−2)

L :

length of the wind tunnel (m)

p :

pressure (Pa)

U :

velocity vector (m s−1)

v i :

ionic wind velocity (m s−1)

V :

voltage (V)

x :

distance along surface (m)

y :

height above surface (m)

φ :

diameter (m)

ɛ :

turbulent dissipation rate (m2 s−3)

ɛ 0 :

permittivity of free space (C m−1 V−1)

Ρ :

density of air (kg m−3)

ρ c :

space charge density (C m−3)

μ :

dynamic viscosity of air (Pa s−1)

μ t :

turbulent viscosity (Pa s−1)

References

  • Allen, P. H. G., & Karayiannis, T. G. (1995). Electrohydrodynamic enhancement of heat transfer and fluid flow. Heat Recovery Systems & CHP, 15(5), 389–423.

    Article  CAS  Google Scholar 

  • Bajgai, T. R., Raghavan, G. S. V., Hashinaga, F., & Ngadi, M. O. (2006). Electrohydrodynamic drying—A concise overview. Drying Technology, 24(7), 905–910.

    Article  CAS  Google Scholar 

  • Bajgai, T. R., & Hashinaga, F. (2001a). High electric field drying of Japanese radish. Drying Technology, 19(9), 2291–2302.

    Article  Google Scholar 

  • Bajgai, T. R., & Hashinaga, F. (2001b). Drying of spinach with a high electric field. Drying Technology, 19(9), 2331–2341.

    Article  Google Scholar 

  • Baron, R., Havet, M., Solliec, C., Pierrat, D., & Touchard, G. (2008). Numerical and experimental study of a continuous electrostatic smoking process. IEEE Transactions on Industry Applications, in press.

  • Barthakur, N. N. (1990). Electrohydrodynamic enhancement of evaporation from NaCl solutions. Desalination, 78, 455–465.

    Article  CAS  Google Scholar 

  • Cao, W., Nishiyama, Y., & Koide, S. (2004a). Electrohydrodynamic drying characteristics of wheat using high voltage electrostatic field. Journal of Food Engineering, 62(3), 209–213.

    Article  Google Scholar 

  • Cao, W., Nishiyama, Y., Koide, S., & Lu, Z. H. (2004b). Drying enhancement of rough rice by an electric field. Biosystems Engineering, 87(4), 445–451.

    Article  Google Scholar 

  • Chen, Y. H., & Barthakur, N. N. (1994). Electrohydrodynamic drying of potato slabs. Journal of Food Engineering, 23, 107–119.

    Article  Google Scholar 

  • Chen, J., & Davidson, H. (2002). Electron density and energy distributions in the positive dc corona: interpretation for corona-enhanced chemical reactions. Plasma Chemistry and Plasma Processing, 22(2), 199–224.

    Article  CAS  Google Scholar 

  • Goldman, M., Goldman, A., & Sigmond, R. S. (1985). The corona discharge, its properties and specific uses. Pure and Applied Chemistry, 57(9), 1353–1362.

    Article  CAS  Google Scholar 

  • Goodenough, T. I. J., Goodenough, P. W., & Goodenough, S. M. (2007). The efficiency of corona wind drying and its application to the food industry. Journal of Food Engineering, 80, 1233–1238.

    Article  Google Scholar 

  • Hashinaga, F., Bajgai, T. R., Isobe, S., & Barthakur, N. N. (1999). Electrohydrodynamic (EHD) drying of apple slices. Drying Technology, 17(3), 479–495.

    Article  Google Scholar 

  • Havet, M., Pierrat, D., Delanoue, N., Pottier, L., & Baron, R. (2004). The modelling of the flow of smoke in an electrostatic smoking process. In Proceedings of the 9th International Congress on Engineering and Food (ICEF 9), Montpellier, 7–11 March 2004.

  • Havet, M., Raoul-Wack, A.-L., & Feillet, P. (2000). Aéraulique et conception assistée des aliments: 2 technologies-clés pour les Industries Alimentaires. Industries Alimentaires et Agricoles, 6, 13–21.

    Google Scholar 

  • Isobe, S., Barthakur, N. N., Yoshino, T., Okushima, L., & Sase, S. (1999). Electrohydrodynamic drying characteristics of agar gel. Food Science and Technology Research, 52(2), 132–136.

    Article  Google Scholar 

  • Kasayapanand, N., & Kiatsiriroat, T. (2007). Numerical modeling of the electrohydrodynamic effect to natural convection in vertical channels. International Journal of Heat and Mass Transfer, 34(2), 162–175.

    Article  Google Scholar 

  • Kulacki, F. A., & Daumenmier, J. A. (1978). A preliminary study of electrohydrodynamic augmented baking. Journal of Electrostatics, 5, 325–336.

    Article  Google Scholar 

  • Labergue, A. (2005). Etude de décharges électriques dans l’air pour le développement d’actionneurs plasmas—Application au contrôle de décollements d’écoulements. Thèse de l’Université de Poitiers, France, Faculté des sciences fondamentales et appliquées.

  • Lai, F. C., & Sharma, R. K. (2005). EHD-enhanced drying with multiple needle electrodes. Journal of Electrostatics, 63, 223–237.

    Article  Google Scholar 

  • Lai, F. C., Huang, M., & Wong, D. S. (2004). EHD-enhanced water evaporation. Drying Technology, 22(3), 597–608.

    Article  Google Scholar 

  • Laohalertdecha, S., Naphon, P., & Wongwises, S. (2007). A review of electrohydrodynamic enhancement of heat transfer. Renewable & Sustainable Energy Reviews, 11(5), 858–876.

    Article  CAS  Google Scholar 

  • Li, F. D., Li, L. T., Sun, J. F., & Tatsumi, E. (2006). Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake. Journal of Food Engineering, 77(2), 275–280.

    Article  Google Scholar 

  • Oussalah, N., & Zebboudj, Y. (2006). Finite-element analysis of positive and negative corona discharge in wire-to-plane system. European Physical Journal. Applied Physics, 34, 215–223.

    Article  Google Scholar 

  • Owsenek, B. L., & Seyed-Yagoobi, J. (1997). Theoretical and experimental study of electro-hydrodynamic heat transfer enhancement through wire–plate corona discharge. Journal of Heat Transfer, 119, 604–610.

    Article  Google Scholar 

  • Owsenek, B. L., Seyed-Yagoobi, J., & Page, R. H. (1995). Experimental investigation of corona wind heat transfer enhancement with a heated horizontal flat plate. Journal of Heat Transfer, 117, 309–315.

    Article  Google Scholar 

  • Rickarda, M., Dunn-Rankina, D., Weinbergb, F., & Carleton, F. (2005). Characterization of ionic wind velocity. Journal of Electrostatics, 63, 711–716.

    Article  Google Scholar 

  • Robinson, M. (1961). Movement of air in the electric wind of the corona discharge. AIEE Transactions, 80, 143–150.

    Google Scholar 

  • Rouaud, O., & Havet, M. (2002). Computation of the airflow in a pilot scale clean room using ke turbulence models. International Journal of Refrigeration, 25, 351–361.

    Article  Google Scholar 

  • Sakiyama, Y., & Graves, D. B. (2006). Finite element analysis of an atmospheric pressure RF-excited plasma needle. Journal of Physics. D, Applied Physics, 39, 3451–3456.

    Article  CAS  Google Scholar 

  • Sadek, S. E., Fax, R. G., & Hurwitz, M. (1972). The influence of electric fields on convective heat and mass transfer from a horizontal surface under forced convection. Journal of Heat Transfer, 94, 144–148.

    CAS  Google Scholar 

  • Xue, X., Barthakur, N. N., & Alli, I. (1999). Electrohydrodynamically-dried whey protein: An electrophoretic and differential calorimetric analysis. Drying Technology, 17(3), 467–478.

    Article  CAS  Google Scholar 

  • Zhao, L., & Adamiak, K. (2005). EHD flow in air produced by electric corona discharge in pin–plate configuration. Journal of electrostatics, 63, 337–350.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Luc Guihard and Christophe Couëdel for their technical contributions. We further wish to thank Dr. Yukinori Sakiyama, Postdoctoral Scholar at the Department of Chemical Engineering at the University of California (Berkeley) for his comments and suggestions on the numerical procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Havet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ould Ahmedou, S.A., Rouaud, O. & Havet, M. Assessment of the Electrohydrodynamic Drying Process. Food Bioprocess Technol 2, 240–247 (2009). https://doi.org/10.1007/s11947-008-0078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0078-6

Keywords

Navigation