Skip to main content
Log in

Intersubband optical absorption in ZnO/MgZnO triple quantum well structures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The linear intersubband optical absorption spectra in MgZnO/ZnO triple quantum wells (TQWs) are theoretically calculated with various geometrical structures and material compositions. Mg composition is found to have remarkable effects on peak position and magnitude of linear optical absorption spectra (OAS). The width of the potential well in which subband 1 is located can also significantly influence the linear OAS, but there is no influence found from the variation of other potential well width and barrier thickness. On the other hand, the effect of electric field transversely applied across MgZnO/ZnO TQWs on the energy of subbands and OAS are analyzed. This study suggests several methods to obtain tunable intersubband optical absorption in MgZnO/ZnO TQWs which can be potentially used as infrared detector devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Lee, M.C. Wanke, Searching for a solid-state terahertz technology. Science 316(5821), 64–65 (2007)

    Article  Google Scholar 

  2. N. Suzuki, N. Iizuka, Feasibility study on ultrafast nonlinear optical properties of 1.55-µm intersubband transition in AlGaN/GaN quantum wells. Jpn. J. Appl. Phys 36(8A), L1006–L1008 (1997)

    Article  ADS  Google Scholar 

  3. C. Gmachl, H.M. Ng, A.Y. Cho, Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of λ∼1.75–4.2 μm. Appl. Phys. Lett. 77(3), 334–336 (2000)

    Article  ADS  Google Scholar 

  4. C. Gmachl, H.M. Ng, S.N.G. Chu, A.Y. Cho, Intersubband absorption at λ∼1.55 μm in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers. Appl. Phys. Lett. 77(23), 3722–3724 (2000)

    Article  ADS  Google Scholar 

  5. M. Shirazi, K. Turkmeneli, S. Liu, S. Dai, C. Edmunds, J. Shao, G. Gardner, D.N. Zakharov, M.J. Manfra, O. Malis, Dramatic enhancement of near-infrared intersubband absorption in c-plane AlInN/GaN superlattices. Appl. Phys. Lett. 108(12), 121108 (2016)

    Article  ADS  Google Scholar 

  6. T. Kotani, M. Arita, K. Hoshino, Y. Arakawa, Temperature dependence of mid-infrared intersubband absorption in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett. 108(5), 052102 (2016)

    Article  ADS  Google Scholar 

  7. K. Driscoll, A. Bhattacharyya, T.D. Moustakas, R. Paiella, L. Zhou, D.J. Smith, Intersubband absorption in AlN/GaN/AlGaNAlN/GaN/AlGaN coupled quantum wells. Appl. Phys. Lett. 91(14), 141104 (2007)

    Article  ADS  Google Scholar 

  8. V. Jakštas, I. Grigelionis, V. Janonis, G. Valušis, I. Kašalynas, G. Seniutinas, S. Juodkazis, P. Prystawko, M. Leszczyński, Electrically driven terahertz radiation of 2DEG plasmons in AlGaN/GaN structures at 110K temperature. Appl. Phys. Lett. 110(20), 202101 (2017)

    Article  ADS  Google Scholar 

  9. E. Bellotti, K. Driscoll, T. Moustakas, R. Paiella, Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl. Phys. Lett. 92(10), 101112 (2008)

    Article  ADS  Google Scholar 

  10. N. Vukmirović, V.D. Jovanović, D. Indjin, Z. Ikonić, P. Harrison, V. Milanović, Optically pumped terahertz laser based on intersubband transitions in a GaN/AlGaN double quantum well. J. Appl. Phys. 97(10), 103106 (2005)

    Article  ADS  Google Scholar 

  11. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72(19), 2466–2468 (1998)

    Article  ADS  Google Scholar 

  12. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gill, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis, Internal electric field in wurtzite ZnO/Zn0.78Mg0.22O quantum wells. Phys. Rev. B 72(24), 241305 (2005)

    Article  ADS  Google Scholar 

  13. M. Belmoubarik, K. Ohtani, H. Ohno, Intersubband transitions in ZnO multiple quantum wells. Appl. Phys. Lett. 92(19), 191906 (2008)

    Article  ADS  Google Scholar 

  14. K. Zhao, G. Chen, A. Shen, B. Li, Mid-infrared intersubband absorptions in ZnO/ZnMgO multiple quantum wells. Appl. Phys. Lett. 104(21), 212104 (2014)

    Article  ADS  Google Scholar 

  15. H. Dakhlaouia, M. Nefzib, Enhancement of the optical absorption in MgZnO/ZnO quantum well under external electric field. Optik 157(1), 1342–1349 (2018)

    Article  ADS  Google Scholar 

  16. J. Sun, B. Zhang, Well-width dependence of exciton–longitudinal-optical-phonon coupling in MgZnO/ZnO single quantum wells. Nanotechnology 19(48), 485401 (2008)

    Article  Google Scholar 

  17. K. Ohtani, M. Belmoubarik, H. Ohno, Intersubband optical transitions in ZnO-based quantum wells grown by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 311(7), 2176–2178 (2009)

    Article  ADS  Google Scholar 

  18. J. Zhu, S.L. Ban, S.H. Ha, A simulation of intersubband absorption in ZnO/MgxZn1-xO quantum wells with an external electric field. Superlattices Microstruct. 56, 92–98 (2013)

    Article  ADS  Google Scholar 

  19. B. Meng, J. Tamayo-Arriola, N. Biavan, M. Bajo, A. Torres-Pardo, M. Hugues, D. Lefebvre, A. Hierro, J. Chauveau, J. Faist, Observation of intersubband absorption in ZnO coupled quantum wells. Phys. Rev. Appl. 12(5), 054007 (2019)

    Article  ADS  Google Scholar 

  20. V. Solovyev, A. Van’kov, I. Kukushkin, J. Falson, D. Zhang, D. Maryenko, Y. Kozuka, A. Tsukazaki, J.H. Smet, M. Kawasaki, Optical probing of MgZnO/ZnO heterointerface confinement potential energy levels. Appl. Phys. Lett. 106(8), 082102 (2015)

    Article  ADS  Google Scholar 

  21. V. Solovyev, I. Kukushkin, Two-subband occupation by 2D electrons in MgZnO/ZnO heterostructures. Appl. Phys. Express 12(2), 021001 (2019)

    Article  ADS  Google Scholar 

  22. J. He, P. Wang, H. Chen, X. Guo, L. Guo, Y. Yang, Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10(1), 011101 (2017)

    Article  ADS  Google Scholar 

  23. L. Orphal, S. Kalusniak, O. Benson, S. Sadofev, Tunable intersubband transitions in ZnO/ZnMgO multiple quantum wells in the mid infrared spectral range. AIP Adv. 7(11), 115309 (2017)

    Article  ADS  Google Scholar 

  24. N. Tkach, J. Seti, Y. Grynyshyn, Electron-phonon interaction in threebarrier nanosystems as active elements of quantum cascade detectors. Semiconductors 49(4), 529 (2015)

    Article  ADS  Google Scholar 

  25. J. Liu, Y. Zhou, S. Zhai, F. Liu, S. Liu, J. Zhang, N. Zhuo, L. Wang, Z. Wang, High-frequency very long wave infrared quantum cascade detectors. Semicond. Sci. Technol 33(12), 125016 (2018)

    Article  ADS  Google Scholar 

  26. T. Ando, H. Taniyama, N. Ohtani, M. Nakayama, M. Hosoda, Self-consistent calculation of subband occupation and electron–hole plasma effects: variational approach to quantum well states with Hartree and exchange-correlation interactions. J. Appl. Phys. 94(7), 4489 (2003)

    Article  ADS  Google Scholar 

  27. F. Bernardini, V. Fiorentini, Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences. Phys. Status Solidi B 216(1), 391–398 (1999)

    Article  ADS  Google Scholar 

  28. D. Ahn, S.-L. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well mode1 with an applied electric field. IEEE J. Quantum Electron. 23(12), 2196–2204 (1987)

    Article  ADS  Google Scholar 

  29. Y.H. Zan, S.L. Ban, Electronic mobility limited by optical phonons in symmetric MgxZn1xO/ZnO quantum wells with mixed phases. Superlattices Microstruct. 150, 106782 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Technology Program of Guangzhou, China (Grant No. 201804010444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongFeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D. Intersubband optical absorption in ZnO/MgZnO triple quantum well structures. Appl. Phys. B 128, 74 (2022). https://doi.org/10.1007/s00340-022-07799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07799-7

Navigation