Skip to main content
Log in

Low noise phase-locked laser system for atom interferometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A low noise laser system for atom interferometry is realized with phase-locked fiber lasers, where the performance of the OPLL is greatly enhanced by the FEOM feedback loop and the narrow linewidths. The laser system demonstrated contribute 2.2 mrad per shot to the interferometer noise and permit continuous long-term operation for more than 115 h without relocking in the field test. Also, the mobile gravimeter equipped with this phase-locked laser system reaches a sensitivity as good as 29 \(\upmu \text {Gal}/\sqrt{\mathrm{Hz}}\) and a resolution of 1.1 \(\upmu \text {Gal}\) within 1500 s, demonstrating performances comparable to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181–184 (1991)

    Article  ADS  Google Scholar 

  2. K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W.P. Schleich, A. Roura, Nat. Rev. Phys. 1, 731–739 (2019)

    Article  Google Scholar 

  3. R. Geiger, A. Landragin, S. Merlet, F. Pereira Dos Santos, AVS Quantum Sci. 2, 024702 (2020)

    Article  ADS  Google Scholar 

  4. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  5. Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, J. Luo, Phys. Rev. A 88, 043610 (2013)

    Article  ADS  Google Scholar 

  6. P. Gillot, O. Francis, A. Landragin, F. Pereira Dos Santos, S. Merlet, Metrologia 51, L15–L17 (2014)

    Article  ADS  Google Scholar 

  7. C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, A. Peters, J. Phys. Conf. Ser. 723, 012050 (2016)

    Article  Google Scholar 

  8. J.M. McGuirk, G.T. Foster, J.B. Fixler, M.J. Snadden, M. Kasevich, Phys. Rev. A 65, 033608 (2002)

    Article  ADS  Google Scholar 

  9. R. Caldani, K.X. Weng, S. Merlet, F. Pereira Dos Santos, Phys. Rev. A 99, 033601 (2019)

    Article  ADS  Google Scholar 

  10. A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, Eur. Phys. J. D 40, 271 (2006)

    Article  ADS  Google Scholar 

  11. D.S. Durfee, Y.K. Shaham, M. Kasevich, Phys. Rev. Lett. 97, 240801 (2006)

    Article  ADS  Google Scholar 

  12. I. Dutta, D. Savoie, B. Fang, B. Venon, C.L. Garrido Alzar, R. Geiger, A. Landragin, Phys. Rev. Lett. 116, 183003 (2016)

    Article  ADS  Google Scholar 

  13. V. Ménoret, P. Vermeulen, N. Le Moigne, S. Bonvalot, P. Bouyer, A. Landragin, B. Desruelle, Sci. Rep. 8, 12300 (2018)

    Article  ADS  Google Scholar 

  14. X. Wu, Z. Pagel, B.S. Malek, T.H. Nguyen, F. Zi, D.S. Scheirer, H. Muller, Sci. Adv. 5, 9 (2019)

    Google Scholar 

  15. Y. Bidel, N. Zahzam, C. Blanchard, A. Bonnin, M. Cadoret, A. Bresson, D. Rouxel, M.F. Lequentrec-Lalancette, Nat. Commun. 9, 627 (2018)

    Article  ADS  Google Scholar 

  16. Y. Bidel, N. Zahzam, A. Bresson, C. Blanchard, M. Cadoret, A.V. Olesen, R. Forsberg, J. Geod. 94, 20 (2020)

    Article  ADS  Google Scholar 

  17. J. Le Gouët, T.E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, F. Pereira Dos Santos, Appl. Phys. B 92, 133–144 (2008)

    Article  ADS  Google Scholar 

  18. F. Sorrentino, Q. Bodart, L. Cacciapuoti, Y.-H. Lien, M. Prevedelli, G. Rosi, L. Salvi, G.M. Tino, Phys. Rev. A 89, 023607 (2014)

    Article  ADS  Google Scholar 

  19. A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, A. Landragin, Phys. Rev. A 80, 063604 (2009)

    Article  ADS  Google Scholar 

  20. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, P. Bouyer, Opt. Lett. 36, 4128 (2011)

    Article  ADS  Google Scholar 

  21. F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, A. Bresson, Appl. Phys. B 118, 1–5 (2015)

    Article  ADS  Google Scholar 

  22. Q. Luo, H. Zhang, K. Zhang, X.-C. Duan, Z.-K. Hu, L.-L. Chen, M.-K. Zhou, Rev. Sci. Instrum. 90, 043104 (2019)

    Article  ADS  Google Scholar 

  23. C.J. Myatt, N.R. Newbury, C.E. Wieman, Opt. Lett. 18, 649 (1993)

    Article  ADS  Google Scholar 

  24. P.N. Melentiev, M.V. Subbotin, V.I. Balykin, Laser Phys. 11, 891 (2001)

    Google Scholar 

  25. O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Phys. Rev. A 86, 033605 (2012)

    Article  ADS  Google Scholar 

  26. S.E. Park, T.Y. Kwon, F. Zi, H.S. Lee, IEEE Trans. Instrum. Meas. 52, 277 (2003)

    Article  Google Scholar 

  27. X. Zhang, M. Huang, F. Zi, K. Huang, X. Lu, Appl. Phys. B 126, 42 (2020)

    Article  ADS  Google Scholar 

  28. R. Karcher, A. Imanaliev, S. Merlet, F. Pereira Dos Santos, New J. Phys. 20, 113041 (2018)

    Article  ADS  Google Scholar 

  29. G. Santarelli, A. Clairon, S.N. Lea, G.M. Tino, Opt. Commn. 104, 339–344 (1994)

    Article  ADS  Google Scholar 

  30. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, G.M. Tino, Rev. Sci. Instrum. 76, 053111 (2005)

    Article  ADS  Google Scholar 

  31. M. Ohtsu, Highly Coherent Semiconductor Lasers (Artech House, Boston, 1992)

    Google Scholar 

  32. J.-B. Long, S.-J. Yang, S. Chen, J.-W. Pan, Opt. Express 26, 27773 (2018)

    Article  ADS  Google Scholar 

  33. P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)

    Article  Google Scholar 

  34. T.L. Gustavson, Precision rotation sensing using atom interferometry. PhD Thesis, Stanford University (1998)

  35. B. Chen, J.-B. Long, H.-T. Xie, C.-Y. Li, L.-K. Chen, B.-N. Jiang, S. Chen, Chin. Opt. Lett. 18, 090201 (2020)

    Article  ADS  Google Scholar 

  36. J. Le Gouët, T.E. Mehlstäubler, J. Kim et al., Appl. Phys. B 92, 133–144 (2008)

    Article  ADS  Google Scholar 

  37. V. Dehant, P. Defraigne, J.M. Wahr, J. Geophys. Res. Solid Earth 104, 1035 (1999)

    Article  Google Scholar 

  38. S. Sarkar, R. Piccon, S. Merlet, F. Pereira Dos Santos, Opt. Express 30, 3358–3366 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Shuai Chen and his team for discussions and the work in the field test, and also thanks Precilasers team for their technical support. This work is funded by the Youth Program of National Natural Science Foundation of China (Grant no. 11804019), and also supported by the National Key R&D Program of China (Grant no. 2016YFA0301601), National Natural Science Foundation of China (Grant no. 11674301), Anhui Initiative in Quantum Information Technologies (Grant no. AHY120000), and Shanghai Municipal Science and Technology Major Project (Grant no. 2019SHZDZX01). Recently, the author became aware that Prof. Franck Pereira Dos Santos and co-workers were also investigating the use of narrow-linewidth fiber lasers and FEOM in a broadband OPLL for atom interferometry [38].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Nan Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, BN. Low noise phase-locked laser system for atom interferometry. Appl. Phys. B 128, 71 (2022). https://doi.org/10.1007/s00340-022-07792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07792-0

Navigation