Skip to main content
Log in

Photoluminescence characteristics of CaSrSiO4: Yb3+, Er3+, Ag phosphor and its application on optical temperature sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A series of CaSrSiO4: Yb3+, Er3+, xAg phosphors have been prepared by high-temperature solid-state reaction method. Scanning electron microscope (SEM) images show that more small spherical particles gather together to form bigger cluster when Ag nanoparticles are co-doped into CaSrSiO4: 9Yb3+, 1Er3+ nanophosphor. Photoluminescence intensities of samples co-doped Ag nanoparticles enhance significantly and the optimized Ag concentration is 0.6 mol%. The fluorescence intensity ratio, the absolute sensitivity, relative sensitivity and temperature resolution are measured, computed and discussed in the range of 303–703 K. The results show that all sensing performances of CaSrSiO4: Yb3+, Er3+, 0.6Ag phosphor are superior to these of the sample un-doped Ag particles and the maximum SA value can go up to 7.3 × 10–3 K−1, indicating that CaSrSiO4: 9Yb3+, 1Er3+, 0.6Ag designed and prepared in this work is a promising optical high-temperature sensing material and it is appropriate to practical application in comprehensive fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.M. Herzog, D. Witkowski, D.A. Rothamer, Appl. Phys. B 127, 103 (2021)

    Article  ADS  Google Scholar 

  2. L. García-Rodríguez, L.D. Sousa-Vieira, M.A. Hernández-Rodriguez, Opt. Mater. 83, 187–191 (2018)

    Article  ADS  Google Scholar 

  3. K. Mariselvam, J.C. Liu, Opt. Laser Technol. 140, 106944 (2021)

    Article  Google Scholar 

  4. S.J. Ding, H.Y. Li, Q.L. Zhang, W.P. Liu, J. Lumin. 237, 118174 (2021)

    Article  Google Scholar 

  5. P. Araichimani, K.M. Prabu, G.S. Kumar, G. Karunakaran, N.V. Minh, S. Karthi, E.K. Girija, E. Kolesnikov, Ceram. Int. 46, 18366–18372 (2020)

    Article  Google Scholar 

  6. G. Gupta, S. Balaji, K. Biswas, K. Annapurna, Appl. Phys. B 125, 28 (2019)

    Article  ADS  Google Scholar 

  7. F. Yue, V. Jambunathan, S.P. David, X. Mateos, M. Aguiló, F. Díaz, J. Šulc, A. Lucianetti, T. Mocek, Appl. Phys. B 126, 44 (2020)

    Article  ADS  Google Scholar 

  8. D.T. Vua, T.T. Vu-Lea, V.N. Nguyena, Q.M. Led, C.R.C. Wang, L.K. Chau, T.S. Yang, M.W.Y. Chang, C.I. Lee, C.C. Ting, J.Y. Lin, H.C. Kan, C.C. Hsu, Int J Smart Nano Mater. 12, 49–71 (2021)

    Article  Google Scholar 

  9. S.D. Hou, S.L. Zhou, S.M. Zhang, H.G. Li, New Carbon Mater. 36, 527–545 (2021)

    Article  Google Scholar 

  10. Q. Wu, S.F. Li, C.R. Li, Q. Xu, J.C. Sun, Z.W. Kang, C.L. Song, Appl. Phys. B 124, 199 (2018)

    Article  ADS  Google Scholar 

  11. M. Runowski, P. Woźny, V. Lavín, Sens. Actuators B Chem. 273, 585–591 (2018)

    Article  Google Scholar 

  12. X.T. Ren, J. Gao, H.N. Shi, L.H. Huang, S.L. Zhao, S.Q. Xu, Opt. 227, 166084 (2021)

    Google Scholar 

  13. S.N. Chen, T. Pang, J.W. Mao, Appl. Phys. A 126, 433 (2020)

    Article  ADS  Google Scholar 

  14. D. Baek, T.K. Lee, I. Jeon, S.H. Joo, S. Shin, J. Park, S.J. Kang, S.K. Kwak, J. Lee, Adv. Sci. 7, 2000104 (2020)

    Article  Google Scholar 

  15. R. Dey, V.K. Rai, Methods Apply Fluoresc. 5, 015006 (2017)

    Article  ADS  Google Scholar 

  16. V.V. Halyan, I.V. Kityk, A.H. Kevshyn, I.A. Ivashchenko, G. Lakshminarayana, M.V. Shevchuk, A. Fedorchuk, M. Piasecki, J. Lumin. 181, 315–320 (2017)

    Article  Google Scholar 

  17. V. Klinkov, V. Aseev, A. Semencha, E. Tsimerman, Sens. Actuator A Phys. 277, 157–162 (2018)

    Article  Google Scholar 

  18. Y. Chen, X.Y. Liu, G.H. Chen, T. Yang, C.L. Yuan, C.R. Zhou, J.W. Xu, J. Mater. Sci. - Mater. Electron. 28, 15657–15662 (2017)

    Article  Google Scholar 

  19. A.K. Soni, A. Kumari, V.K. Rai, Sens. Actuators B Chem. 216, 64–71 (2015)

    Article  Google Scholar 

  20. C. Wang, Y. Jin, L. Yuan, H. Wu, G. Ju, Z. Li, D. Liu, Y. Lv, L. Chen, Y. Hu, Chem. Eng. J. 374, 992–1004 (2019)

    Article  Google Scholar 

  21. W.G. Ran, N.H. Mi, P.S. Heum, L.B. Ram, K.J. Hwan, J.J. Hyun, J.S. Shi, Dalton Trans. 48, 4405–4412 (2019)

    Article  Google Scholar 

  22. Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, G. Qian, Adv. Mater. 27, 1420–1425 (2015)

    Article  Google Scholar 

  23. I.M. Pinatti, P.F.S. Pereira, M.D. Assis, E. Longo, I.L.V. Rosa, J. Alloy. Compd. 771, 433–447 (2019)

    Article  Google Scholar 

  24. B. Dong, C.R. Li, M.K. Lei, J. Lumin. 126, 441–446 (2007)

    Article  Google Scholar 

  25. J.A. Jiménez, S. Lysenko, Appl. Phys. B 127, 33 (2021)

    Article  ADS  Google Scholar 

  26. R.G. Geitenbeek, P.T. Prins, W. Albrecht, A. van Blaaderen, B.M. Weckhuysen, A. Meijerink, J. Phys. Chem. C 121, 3503–3510 (2017)

    Article  Google Scholar 

  27. Y. Xue, C. Ding, Y. Rong, Q. Ma, C. Pan, E. Wu, B. Wu, H. Zeng, Small 13, 1701155 (2017)

    Article  Google Scholar 

  28. D. Kumara, S. Vermaa, V. Sharmab, V. Kumar, Vacuum 157, 492–496 (2018)

    Article  ADS  Google Scholar 

  29. Z. Li, L. Wang, Z. Wang, X. Liu, Y. Xiong, J. Phys. Chem. C 115, 3291–3296 (2011)

    Article  Google Scholar 

  30. D. Mendez-Gonzalez, S. Melle, O.G. Calderón, M. Laurenti, E. Cabrera-Granado, A. Egatz-Gómez, E. López-Cabarcos, J. Rubio-Retama, E. Díaz, Nanoscale Nanoscale 11, 13832–13844 (2019)

    Article  Google Scholar 

  31. J. Dong, W. Gao, Q.Y. Han, Y.K. Wang, J.X. Qi, X.W. Yan, M.T. Sun, Reviews in Physics 4, 100026 (2019)

    Article  Google Scholar 

  32. S. Trpkovski, S.A. Wade, G.W. Baxter, S.F. Collins, Rev. Sci. Instrum. 74, 2880–2884 (2003)

    Article  ADS  Google Scholar 

  33. G.P.M. Strojnik, J. Opt. Soc. Am. 42, 1805–1811 (2004)

    Google Scholar 

  34. S. Baek, Y. Jeong, J. Nilsson, J.K. Sahu, B. Lee, Opt. Fiber tech. 12, 10–19 (2006)

    Article  ADS  Google Scholar 

  35. D. Chen, W. Xu, S. Yuan, X. Li, J. Zhong, J. Math. Chem. 5, 9619–9628 (2017)

    Google Scholar 

  36. S. Chen, W. Song, J. Cao, F. Hu, H. Guo, J. Alloys Compd. 825, 154011 (2020)

    Article  Google Scholar 

  37. J. Cao, W. Chen, D. Xu, F. Hu, L. Chen, H. Guo, J. Lumin. 194, 219–224 (2018)

    Article  Google Scholar 

  38. G.T. Xiang, X.T. Liu, J.H. Zhang, Z. Liu, W. Liu, Y. Ma, S. Jiang, X. Tang, X.J. Zhou, L. Li, Y. Jin, Inorg. Chem. 58, 8245–8252 (2019)

    Article  Google Scholar 

  39. L. Mukhopadhyay, V.K. Rai, J. Alloy. Compd. 878, 160351 (2021)

    Article  Google Scholar 

  40. S. Pattnaik, V.K. Rai, Mater. Sci. Eng. B 272, 115318 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11004092), the Foundation of Science and Technology Department of Liaoning Province, China (201602455) and the Foundation of Education Department of Liaoning Province, China (L201683665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengren Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Chu, Y., Zhao, Q. et al. Photoluminescence characteristics of CaSrSiO4: Yb3+, Er3+, Ag phosphor and its application on optical temperature sensor. Appl. Phys. B 128, 42 (2022). https://doi.org/10.1007/s00340-021-07716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07716-4

Navigation