Skip to main content
Log in

On the photon antibunching and amplitude squared squeezing of coherent light coupled to a periodically driven anharmonic oscillator

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A single mode of the quantized electromagnetic field coupled to a nonlinear medium leads to the model of an anharmonic oscillator. For third-order nonlinear medium, the corresponding anharmonic oscillator will be a quartic one. Under the rotating wave approximation (RWA), it is possible to get rid of the nonconserving energy terms and hence a two-photon anharmonic oscillator out of the quartic anharmonic oscillator. We derive the solution of a two-photon anharmonic oscillator with periodically driven term under rotating wave approximation (RWA). The driven term is assumed to be classical. The influence of the periodic force on the amplitude squared squeezing and on the antibunching of photons of the input coherent light are clearly indicated. It is established that the photon bunching and antibunching of the input coherent light coupled to the driven two-photon anharmonic oscillator are possible only if the driven term exists. In absence of nonlinear term (i.e two-photon term), the nonconservation of photon is possible and the generated photons exhibits the bunching effects. With the increase of the dimensionless interaction time, the antibunching of photons exhibit oscillatory behaviour vigorously provided the initial photon number is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.L. Loney, An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies, 2nd edn. (Cambridge University Press, Cambridge, 1913)

    Google Scholar 

  2. A.G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (Taylor and Francis, New York, 1994)

    MATH  Google Scholar 

  3. L.M.B. da Costa Campos, Linear Differential Equations and Oscillators, 1st edn. (CRC Press, New York, 2019)

    Book  Google Scholar 

  4. K-H. Steiner, Interactions Between Electromagnetic Fields and Matter, Vieweg Tracts in Pure and Applied Physics (Pergamon Press, Oxford, 1973)

  5. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  6. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  7. A.H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981)

    MATH  Google Scholar 

  8. A.H. Nayfeh, D.T. Mook, Non-Linear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  9. R. Bellman, Methods of Nonlinear Analysis, vol. 1 (Academic Press, New York, 1970), p. 198

    Google Scholar 

  10. S.L. Ross, Differential Equations, 3rd edn. (Wiley, New York, 1984)

    MATH  Google Scholar 

  11. C.M. Bender, T.T. Wu, Phys. Rev. 184(1231), 8 (1969)

    Google Scholar 

  12. C.M. Bender, T.T. Wu, Phys. Rev. D 7, 1620 (1973)

    Article  ADS  Google Scholar 

  13. S. Mandal, Phys. Lett. A 299, 531 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Mandal, J. Phys. A 31, L501 (1998)

    Article  ADS  Google Scholar 

  15. A. Pathak, S. Mandal, Phys. Lett. A 286, 261 (2001)

    Article  ADS  Google Scholar 

  16. F.T. Hioe, F.W. Montroll, J. Math. Phys. 16, 1945 (1975)

    Article  ADS  Google Scholar 

  17. E.Z. Liverts, B.V. Madelzweig, F. Tabakin, arXiv:hep-ph/0603165

  18. S. Mandal, Optik 127, 10042 (2016)

    Article  ADS  Google Scholar 

  19. C.C. Gerry, Phys. Lett. A 124, 237 (1989)

    Article  ADS  Google Scholar 

  20. V. Buzek, Phys. Lett. A 136, 188 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Tanas, Phys. Lett. A 141, 217 (1989)

    Article  ADS  Google Scholar 

  22. C.M. Bender, L.M.A. Bettencourt, Phys. Rev. Lett. 77, 4114 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. K. Husimi, Prog. Theor. Phys. 9, 381 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.L. Zhang, R.D. Khan, S. Ding, W. Shen, Proc. SPIE 1726, 1992 Shanghai International Symposium on Quantum Optics (1992)

  25. L.O. Castanos, A. Zunig-Segundo, Am. J. Phys. 87, 815 (2019)

    Article  ADS  Google Scholar 

  26. D.C. Khandekar, S.V. Lawande, J. Math. Phys. 20, 1870 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  27. H.-C. Kim, M.-H. Lee, J.-Y. Ji, J.K. Kim, Phys. Rev. A 53, 3767 (1996)

    Article  ADS  Google Scholar 

  28. A. Miranowicz, M. Paprzycka, Y. Liu, J. Bajer, F. Nori, Phys. Rev. A 87, 023809 (2013)

    Article  ADS  Google Scholar 

  29. D.K. Bayen, S. Mandal, Opt. Quantum Electron. 51, Art. 388 (2019)

  30. D.K. Bayen, S. Mandal, Eur. Phys. J. Plus 135, Art. 408 (2020)

  31. D.K. Bayen, S. Mandal, Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons, ed. by P.C. Deshmukh, E. Krishnakumar, S. Fritsche, M. Krishnamurthy, S. Majumder (2019), pp. 100–105

  32. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005), p. 10

    Google Scholar 

  33. R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University Press, Oxford, 2000), p. 128

    MATH  Google Scholar 

  34. P.D. Drummond, D.F. Walls, J. Phys. A 13, 725 (1980)

    Article  ADS  Google Scholar 

  35. S. Endo, Y. Matsuzaki, K. Kakuyanagi, S. Saito, N. Lambert, F. Nori, Sci. Rep. 10, 1751 (2020)

    Article  ADS  Google Scholar 

  36. R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987)

    Article  ADS  Google Scholar 

  37. D.F. Walls, Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  38. C.K. Hong, L. Mandel, Phys. Rev. Lett. 54, 323 (1985)

    Article  ADS  Google Scholar 

  39. M. Hillery, Phys. Rev. A 36, 3796 (1987)

    Article  ADS  Google Scholar 

  40. D.F. Walls, Nature 280, 451 (1979)

    Article  ADS  Google Scholar 

  41. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  42. A. Allevi, M. Lamperti, M. Bondani, J. Perina Jr., V. Michalek, O. Haderka, R. Machulka, Phys. Rev. A 88, 063807 (2013)

    Article  ADS  Google Scholar 

  43. A. Allevi, S. Olivares, M. Bondani, Int. J. Quantum Inf. 10, 1241003 (2012)

    Article  Google Scholar 

  44. M. Avenhaus, K. Laiho, M.V. Chekhova, C. Silberhorn, Phys. Rev. Lett. 104, 063602 (2010)

    Article  ADS  Google Scholar 

  45. J. Perina Jr., O. Hadreka, V. Michálek, Sci. Rep. 9, 8961 (2019)

    Article  ADS  Google Scholar 

  46. R. Prakash, A.K. Yadav, Opt. Commun. 285, 2387 (2012)

    Article  ADS  Google Scholar 

  47. Z.-M. Zhang, L. Xu, J.-L. Chai, F.-L. Li, Phys. Lett. A 150, 27 (1990)

    Article  ADS  Google Scholar 

  48. R. Hanbury-Brown, R.Q. Twiss, Nature 177, 27 (1956)

    Article  ADS  Google Scholar 

  49. H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977)

    Article  ADS  Google Scholar 

  50. D. Stoler, Phys. Rev. Lett. 33, 1397 (1974)

    Article  ADS  Google Scholar 

  51. A. Pathak, S. Mandal, Mod. Phys. Lett. B 17, 225 (2003)

    Article  ADS  Google Scholar 

  52. S. Mandal, Mod. Phys. Lett. B 16, 963 (2002)

    Article  ADS  Google Scholar 

  53. S. Mandal, Opt. Commun. 240, 363 (2004)

    Article  ADS  Google Scholar 

  54. S. Mandal, J. Perina, Phys. Lett. A 328, 144 (2004)

    Article  ADS  Google Scholar 

  55. H.J. Carmichael, D.F. Walls, J. Phys. B 9, L43 (1976)

    Article  ADS  Google Scholar 

  56. C.C. Gerry, J.B. Togeas, Opt. Commun. 69, 263 (1989)

    Article  ADS  Google Scholar 

  57. C.C. Gerry, S. Rodrigues, Phys. Rev. A 36, 5444 (1987)

    Article  ADS  Google Scholar 

  58. F. Diedrich, H. Walther, Phys. Rev. Lett. 58, 203 (1987)

    Article  ADS  Google Scholar 

  59. G. Rempe, R.J. Thompson, W.D. Lee, H.J. Kimble, Phys. Rev. Lett. 67, 1727 (1991)

    Article  ADS  Google Scholar 

  60. R. Short, L. Mandel, Phys. Rev. Lett. 51, 384 (1983)

    Article  ADS  Google Scholar 

  61. T. Basche, W. Moerner, M. Oritt, H. Talon, Phys. Rev. Lett. 69, 1516 (1992)

    Article  ADS  Google Scholar 

  62. P. Grangier, G. Roger, A. Aspect, A. Heidmann, S. Reynaud, Phys. Rev. Lett. 57, 687 (1986)

    Article  ADS  Google Scholar 

  63. S.L. Mielke, G.T. Foster, L.A. Orozco, Phys. Rev. Lett. 80, 3948 (1998)

    Article  ADS  Google Scholar 

  64. N. Sangouard, C. Simon, H. Riedmatten, N. Gisin, Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  65. N. Sangouard, C. Simon, B. Zhao, Y.-A. Chen, H. Riedmatten, J.-W. Pan, N. Gisin, Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

  66. S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, V. Scarani, New J. Phys. 11, 045021 (2009)

  67. M. Leifgen, New J. Phys. 16, 023021 (2014)

  68. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  69. Jr. J. Peřina, A. Lukl, J.K. Kalaga, W. Leoński, A. Miranowicz, Phys. Rev. A 100, 053820 (2010)

Download references

Acknowledgements

One of the authors (DKB) is thankful to the CSIR for awarding him a Senior Research Fellowship (09/202(0062)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Mandal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-I

We now give few analytical expressions for the purpose of the calculation of the amplitude squared squeezing and the antibunching of photons of the coherent light coupled to a driven two photon anharmonic oscillator. These analytical equations are used in the body of the text. The temporal evolution of the average photon number \({\bar{N}}(t)=\langle \alpha |{\hat{n}}(t)|\alpha \rangle =\langle \alpha |a^{\dagger }(t)a(t)|\alpha \rangle\) in terms of initial coherent state follows as

$$\begin{aligned} {\bar{N}}(t) \nonumber \\= & {} |\alpha |^{2}+f(0)|\alpha |e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\left[ t\left( 1\right. \right. \nonumber \\&\left. \left. +\frac{3}{4}\lambda |\alpha |^{2}\cos \frac{3\lambda t}{4}\right) \sin \left( |\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \right. \nonumber \\&+ \frac{3}{4}\lambda |\alpha |^{2}t\sin \frac{3\lambda t}{4}\cos \left( |\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \nonumber \\&\left. +\sin t\sin \left( t+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \right] \nonumber \\&+ \frac{f^{2}(0)}{4}\left\{ \left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) ^{2}t^{2}\right. \nonumber \\&\left. +\left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) t\sin 2t+\sin ^{2}t\right\} \end{aligned}$$
(A.1)

In the calculation of \({\bar{N}}(t)=\langle \alpha |a^{\dagger }(t)a(t)|\alpha \rangle ,\) we have made use of the eigenvalue equation of the initial coherent state \(a(0)|\alpha \rangle =\alpha |\alpha \rangle .\) The parameter \(\alpha =|\alpha |\exp (i\theta )\) is in general complex, where \(|\alpha |^{2}={\bar{n}}\) is regarded as the number of photons present in the initial coherent field. The angle \(\theta\) corresponds the initial phase of the coherent light field. Now, we calculate \(\bar{N^{2}}(t)=\langle \alpha |{\hat{n}}^{2}(t)|\alpha \rangle\)

$$\begin{aligned} \bar{N^{2}}(t)=K_{1}+K_{2}+K_{3}+K_{4}+K_{6} \end{aligned}$$
(A.2)

where

$$\begin{aligned} K_{1}= & {} |\alpha |^{4}+|\alpha |^{2} \end{aligned}$$
(A.3)
$$\begin{aligned} K_{2}= & {} 2f(0)|\alpha |^{3}e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\left[ \left( 1+\frac{3}{4}\lambda \right) t\ \right. \nonumber \\&\times\sin \left( \sin \frac{3\lambda t}{4}+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) +\frac{3}{4}\lambda |\alpha |^{2}t\ \nonumber \\&\times\sin \left( \frac{3\lambda t}{2}+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \nonumber \\&+ \left. \sin t\sin \left( t+\frac{3\lambda t}{4}+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \right] \nonumber \\&+f(0)|\alpha |e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\left[ t\sin \left( |\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \right. \nonumber \\&+ \frac{3}{4}\lambda |\alpha |^{2}t\sin \left( \frac{3\lambda t}{4}+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \nonumber \\&\left. +\sin t\sin \left( t+|\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \right] \end{aligned}$$
(A.4)
$$\begin{aligned} K_{3}= & {} -\frac{f^{2}(0)|\alpha |^{2}}{4}e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\left[ \left( 1+\frac{3}{4}\lambda \right) t^{2}\ \right. \nonumber \\&\times\cos \left( \frac{3\lambda t}{4}+|\alpha |^{2}\sin \frac{3\lambda t}{2}-2\theta \right) \nonumber \\&+ \frac{3}{2}\lambda |\alpha |^{2}t^{2}\cos \left( \frac{9}{4}\lambda t+|\alpha |^{2}\sin \frac{3\lambda t}{2}-2\theta \right) \nonumber \\&+\left( 2+\frac{3}{4}\lambda \right) t\sin t\cos \left( t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3\lambda t}{2}-2\theta \right) \nonumber \\&+ \frac{3}{2}\lambda |\alpha |^{2}t\sin t\cos \left( t+\frac{9}{4}\lambda t+|\alpha |^{2}\sin \frac{3\lambda t}{2}-2\theta \right) \nonumber \\&\left. +\sin ^{2}t\cos \left( 2t+\frac{3}{4}\lambda t-2\theta +|\alpha |^{2}\sin \frac{3\lambda t}{2}\right) \right] \end{aligned}$$
(A.5)
$$\begin{aligned} K_{4}= & {} \frac{f^{3}(0)|\alpha |}{4}e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\nonumber \\&\times \left[ \left( 2t^{3}+\frac{3}{2}\lambda t^{3}+2t^{2}\sin 2t+\frac{3}{4}\lambda t{}^{2}\sin 2t+2t\sin ^{2}t\right) \ \right. \nonumber \\&\times \sin\left( |\alpha |^{2}\sin \frac{3\lambda t}{4}-\theta \right) \nonumber \\&+ \left( \frac{9}{2}\lambda t^{3}+3\lambda t{}^{2}\sin 2t+\frac{3}{2}\lambda t\sin ^{2}t\right) |\alpha |^{2}\ \nonumber \\&\times\sin \left( \frac{3}{4}\lambda t-\theta +|\alpha |^{2}\sin \frac{3\lambda t}{4}\right) \nonumber \\&+ \left( 2t^{2}\sin t+\frac{3}{2}\lambda t^{2}\sin t+2t\sin t\sin 2t\right. \nonumber \\&\left. +\frac{3}{4}\lambda t\sin t\sin 2t+2\sin ^{3}t\right) \ \nonumber \\&\times\sin \left( t-\theta +|\alpha |^{2}\sin \frac{3\lambda t}{4}\right) \nonumber \\&+ \left( 3\lambda t{}^{2}\sin t+\frac{3}{2}\lambda t\sin t\sin 2t\right) |\alpha |^{2}\ \nonumber \\&\left. \times\sin\left( t+\frac{3}{4}\lambda t-\theta +|\alpha |^{2}\sin \frac{3\lambda t}{4}\right) \right] \end{aligned}$$
(A.6)
$$\begin{aligned} K_{5}= & {} \frac{f^{2}(0)}{2}\left[ \left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) ^{2}t^{2}\right. \nonumber \\&\left. +\left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) t\sin 2t+\sin ^{2}t\right] \nonumber \\&+ f^{2}(0)|\alpha |^{2}\left[ \left( 1+\frac{3}{4}\lambda +\frac{3}{4}\lambda |\alpha |^{2}\right) ^{2}t^{2}\right. \nonumber \\&\left. +\left( 1+\frac{3}{4}\lambda +\frac{3}{4}\lambda |\alpha |^{2}\right) t\sin 2t+\sin ^{2}t\right] \end{aligned}$$
(A.7)

and

$$\begin{aligned} K_{6}= & {} \left( \frac{f^{2}(0)}{4}\left[ \left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) ^{2}t^{2}\right. \right. \nonumber \\&\left. \left. +\left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) t\sin 2t+\sin ^{2}t\right] \right) ^{2} \end{aligned}$$
(A.8)

Finally, the expressions for

$$\begin{aligned} K_{0}= & {} 2|\alpha |^{4}e^{-|\alpha |^{2}\left( 1-\cos 3\lambda t\right) }\nonumber \\&\times \cos \left( 4t+\frac{9}{2}\lambda t+|\alpha |^{2}\sin \lambda t-4\theta \right) \nonumber \\&-|\alpha |^{3}f(0)e^{-|\alpha |^{2}\left( 1-\cos \frac{9\lambda t}{4}\right) }\nonumber \\&\times \left[ \sin \left( 4t+\frac{9\lambda t}{4}+|\alpha |^{2}\sin \frac{9\lambda t}{4}-3\theta \right) \right. \nonumber \\&\times \left( 4+3\lambda \right) t+3\lambda |\alpha |^{2}t\nonumber \\&\times \sin \left( 4t+\frac{9\lambda t}{2}+|\alpha |^{2}\sin \frac{9\lambda t}{4}-3\theta \right) \nonumber \\&\left. +4\sin t\sin \left( 3t+\frac{9\lambda t}{4}+|\alpha |^{2}\sin \frac{9\lambda t}{4}-3\theta \right) \right] \nonumber \\&-\frac{f^{2}(0)|\alpha |^{4}}{2} e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{2}\right) }\nonumber \\&\times \left[ \left( 6+\frac{33\lambda }{4}\right) t^{2}\right. \nonumber \\&\times \cos \left( 4t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{2}\lambda t-2\theta \right) \nonumber \\&+9\lambda |\alpha |^{2}t^{2}\cos \left( 4t+\frac{9}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{2}\lambda t-2\theta \right) \nonumber \\&+ 2t\left( 6+\frac{9}{2}\lambda \right) \sin t\nonumber \\&\times \cos \left( 3t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{2}\lambda t-2\theta \right) +9\lambda |\alpha |^{2}t\sin t\nonumber \\&\times \cos \left( 3t+\frac{9}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{2}\lambda t-2\theta \right) \nonumber \\&+ \left. 6\sin ^{2}t\cos \left( 2t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{2}\lambda t-2\theta \right) \right] \nonumber \\&-\frac{f^{3}(0)|\alpha |}{4}e^{-|\alpha |^{2}\left( 1-\cos \frac{3\lambda t}{4}\right) }\nonumber \\&\times \left[ \left( 4+\frac{9\lambda }{2}\right) t^{3}\sin \left( 4t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \right. \nonumber \\&+ 9\lambda |\alpha |^{2}t^{3}\sin \left( 4t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \nonumber \\&+3t^{2}\left( 4+\frac{13}{4}\lambda \right) \sin t\cos \left( 3t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \nonumber \\&+ 18\lambda |\alpha |^{2}t^{2}\sin t\cos \left( 3t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \nonumber \\&+3t\left( 4+\frac{13}{4}\lambda \right) \sin ^{2}t\sin \left( 2t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \nonumber \\&+ 9\lambda |\alpha |^{2}t\sin ^{2}t\sin \left( 2t+\frac{3}{4}\lambda t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \nonumber \\&\left. +4\sin ^{3}t\sin \left( t+|\alpha |^{2}\sin \frac{3}{4}\lambda t-\theta \right) \right] +\frac{f^{2}(0)}{8}\nonumber \\&\times \left( 1+3\lambda |\alpha |^{2}\right) t^{4}\cos 4t+6t^{2}\left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) \nonumber \\&\times \left. \cos 2t\sin ^{2}t+4t^{3}\left( 1+\frac{9}{4}\lambda |\alpha |^{2}\right) \sin t\cos 3t\right] \nonumber \\&+ \left. 4t\left( 1+\frac{3}{4}\lambda |\alpha |^{2}\right) \sin ^{3}t\cos t+\sin ^{4}t\right] \end{aligned}$$
(A.9)

Therefore, the analytical expressions for the \(\bar{N^{2}}\) is now available and could be used for calculating the ASS and bunching and antibunching of photons of the input coherent light coupled to the driven two-photon anharmonic oscillator.

Appendix-II

In order to take care the effects of surrounding, the Eq. (7) is casted in the quantum Heisenberg–Langevin equations of motion

$$\begin{aligned} \dot{{\hat{a}}}=-i{\hat{O}}{\hat{a}}-\frac{\gamma }{2}{\hat{a}}+{\hat{b}}-if(t) \end{aligned}$$
(B.1)

The parameter \(\gamma\) is the dissipation/decay rate. The fluctuating Langevin force operator \({\hat{b}}\) is introduced in Eq. (B.1). Now, we follow the prescription [69] for the operator \({\hat{b}}\) and its Hermitian conjugate \({\hat{b}}^{\dagger }\)

$$\begin{aligned} \langle {\hat{b}}^{\dagger }(t){\hat{b}}(t^{\prime })\rangle =0,\quad \langle {\hat{b}}(t){\hat{b}}^{\dagger }(t^{\prime })\rangle =2\gamma \,\delta (t-t^{\prime }) \end{aligned}$$
(B.2)

where \(\delta\) stands for the Dirac delta function. After a small rearrangement we have,

$$\begin{aligned} \dot{{\hat{a}}}=-{\hat{O}}_{\gamma }{\hat{a}}+{\hat{b}}-if(t) \end{aligned}$$
(B.3)

where we define new parameter \({\hat{O}}_{\gamma }=i{\hat{O}}+\frac{\gamma }{2}\). Therefore, the effects of surrounding will modify the frequency as a complex one. Again, the forcing parameter is also modified by the presence of the term involving Langevin force parameter. The possibility of getting analytical solution of the Eq. (B.3) is to be explored after getting the functional form of \({\hat{b}}\) and f(t). In the present investigation we do not have any plan to do that.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayen, D.K., Mandal, S. On the photon antibunching and amplitude squared squeezing of coherent light coupled to a periodically driven anharmonic oscillator. Appl. Phys. B 127, 161 (2021). https://doi.org/10.1007/s00340-021-07711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07711-9

Navigation