Skip to main content
Log in

Continuous wave laser thermal restoration of oxidized lead-based pigments in mural paintings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Red lead and lead white are some of the most ancient and common pigments in mural paintings. However, they tend to blacken with time due to their oxidation to plattnerite (β-PbO2). The possibility to induce the reconversion reactions by CW laser heating is hereby discussed. A thermodynamic study by TGA showed that direct cerussite or hydrocerussite formation from plattnerite are not suitable reconversion routes, which was confirmed by laser irradiation trials under CO2 and CO2/H2O fluxes. Minium (Pb3O4) and subsequent massicot (β-PbO) formation from plattnerite were achieved (confirmed by SEM–EDS, XRD and micro-Raman) under Ar+, 810 nm diode and Nd:YAG lasers. The latter appears to be the most suited for restauration purposes, given the broad minium reconversion irradiance range. This is confirmed by successful trials on macroscopic areas of naturally darkened red lead containing samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Reconversion is hereby used in the sense of a chemical reaction (conversion) taking place backward. Here the conversion is the oxidation to plattnerite; the reconversion is thus the formation of cerussite or hydrocerussite (white) or minium (red) from plattnerite (black) [6].

References

  1. E.W. Fitzhugh, Red lead and minium, in Artists’ pigments: a handbook of their history and characteristics, vol. 1, ed. by R.L. Feller (National Gallery of Art, Washington, 1986), pp. 109–139

    Google Scholar 

  2. R.J. Gettens, H. Kühn, W.T. Chase, Lead White, in Artists’ pigments: a handbook of their history and characteristics, vol. 2, ed. by A. Roy (National Gallery of Art, Washington, 1993), pp. 67–81

    Google Scholar 

  3. C. d’Andrea di Cennini, ‘On the character of white lead. Chapter LVIIII’, in The Craftsman’s Handbook. The Italian ‘Il Libro dell’ Arte.’ Translated by Daniel V. Thompson, Jr, New York: Dover Publications, Inc, 1933, p. 34.

  4. F. Baldinucci, ‘Biacca’, Vocabolario Toscano dell’Arte del Disegno. Firenze, p. 21, 1681, [Online]. Available: https://gallica.bnf.fr/ark:/12148/bpt6k9762233v.

  5. S. Aze, J.-M. Vallet, V. Detalle, O. Grauby, A. Baronnet, Chromatic alterations of red lead pigments in artworks: a review. Phase Transit. 81(2–3), 145–154 https://doi.org/10.1080/01411590701514326

  6. S.M. Lussier, G.D. Smith, A review of the phenomenon of lead white darkening and its conversion treatment. Stud. Conserv. 52(sup1), 41–53 (2007). https://doi.org/10.1179/sic.2007.52.Supplement-1.41

    Article  Google Scholar 

  7. E. Kotulanová, P. Bezdička, D. Hradil, J. Hradilová, S. Švarcová, T. Grygar, Degradation of lead-based pigments by salt solutions. J. Cult. Herit. 10(3), 367–378 (2009). https://doi.org/10.1016/j.culher.2008.11.001

    Article  Google Scholar 

  8. J.P. Petushkova, N.N. Lyalikova, Microbiological degradation of lead-containing pigments in mural paintings. Stud. Conserv. 31(2), 65 (1986). https://doi.org/10.2307/1506003

    Article  Google Scholar 

  9. M. Vagnini et al., Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: study of Cimabue’s paintings in Assisi. Vib. Spectrosc. 98, 41–49 (2018). https://doi.org/10.1016/j.vibspec.2018.07.006

    Article  Google Scholar 

  10. M. Vagnini, R. Vivani, A. Sgamellotti, C. Miliani, Blackening of lead white: study of model paintings. J. Raman Spectrosc. (2020). https://doi.org/10.1002/jrs.5879

    Article  Google Scholar 

  11. C. Aibéo, E. M. Castellucci, M. Matteini, B. Sacchi, A. Zoppi, C. Lofrumento, ‘A micro-Raman spectroscopy study of the formation of lead dioxide from lead white’, in Art Technology: Sources and Methods, London, 2008, pp. 138–140.

  12. S. Aze, J.-M. Vallet, M. Pomey, A. Baronnet, O. Grauby, Red lead darkening in wall paintings: natural ageing of experimental wall paintings versus artificial ageing tests. Eur. J. Mineral. 19(6), 883–890 (2007). https://doi.org/10.1127/0935-1221/2007/0019-1771

    Article  ADS  Google Scholar 

  13. C. Prasartset, ‘Materials and techniques of Thai wall paintings: a comparative study of late 19th century murals and early-period murals’, in ICOM Committee for Conservation, 11th triennial meeting, Edinburgh, Scotland, 1-6 September 1996 : preprints, Edinburgh, 1996, pp. 430–434.

  14. D. Saunders, M. Spring, and C. Higgitt, ‘Colour change in red lead-containing paint films’, in ICOM Committee for Conservation, ICOM-CC : 13th Triennial Meeting, Rio de Janeiro, 22–27 September 2002 : preprints, London, 2002, pp. 455–463

  15. S. Giovannoni, M. Matteini, A. Moles, Studies and developments concerning the problem of altered lead pigments in wall painting. Stud. Conserv. 35(1), 21–25 (1990). https://doi.org/10.1179/sic.1990.35.1.21

    Article  Google Scholar 

  16. M. Matteini and A. Moles, ‘Recupero di un pigmento modificato, la bianca di piombo, mediante un trattamento chemico’, in Metodo e Scienza, Firenze 23 giugno 1982 - 6 gennaio 1983, pp. 253–256.

  17. M. Matteini, ‘Ossidazione della Biacca in pitture murali. Metodi proposti per la riconversione del pigmento nelle pitture di A. Baldovinetti nella Chiesa di S. Miniato (Firenze)’, in Atti del convegno sul restauro delle opere d’arte. Firenze, 2–7 novembre 1976, Firenze, 1976, pp. 257–269; 527–529.

  18. I. Costantini et al., Darkening of lead- and iron-based pigments on late Gothic Italian wall paintings: energy dispersive X-ray fluorescence, μ-Raman, and powder X-ray diffraction analyses for diagnosis: Presence of β-PbO 2 (plattnerite) and α-PbO2 (scrutinyite). J. Raman Spectrosc. 51(4), 680–692 (2020). https://doi.org/10.1002/jrs.5817

    Article  ADS  Google Scholar 

  19. M. Dneprovskaya, Analysis of medieval fresco pigments from the Georgian Republic. MRS Proc. 267, 889 (1992). https://doi.org/10.1557/PROC-267-889

    Article  Google Scholar 

  20. M.B. Dneprovskaya, Medieval pigment and plaster technology in the XII-XIII Century mural paintings at David-Garedji, Georgia. MRS Proc. 352, 727 (1995). https://doi.org/10.1557/PROC-352-727

    Article  Google Scholar 

  21. L. de Ferri, F. Mazzini, D. Vallotto, G. Pojana, In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy). Archaeol. Anthropol. Sci. 11(2), 609–625 (2019). https://doi.org/10.1007/s12520-017-0550-1

    Article  Google Scholar 

  22. V. Fassina, M. Mazza, A. Naccari, ‘Indagini preliminari sulla tecnica pittorica e sullo stato di conservazione dei dipinti murali della Chiesa della Difesa di Vigo di Cadore (BL)’, in Scienza e beni culturali, 21, Bressanone, Jul. 2005, pp. 775–786.

  23. L. Chupin, ‘Rôle de l’environnement dans le noircissement des peintures au blanc de plomb’, Master thesis, Centre Interrégional de Conservation et Restauration du Patrimoine, Marseille, 2011.

  24. C. Degrigny et al., Technical study of Germolles’ wall paintings: the input of imaging technique. Virtual Archaeol. Rev. 7(15), 1 (2016). https://doi.org/10.4995/var.2016.5831

    Article  Google Scholar 

  25. M. Koller, H. Leitner, H. Paschinger, Reconversion of altered lead pigments in alpine mural paintings. Stud. Conserv. 35(1), 15–20 (1990). https://doi.org/10.1179/sic.1990.35.1.15

    Article  Google Scholar 

  26. J. Trovão, F. Gil, L. Catarino, F. Soares, I. Tiago, A. Portugal, Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. Int. Biodeterior. Biodegrad. 149, 104933 (2020). https://doi.org/10.1016/j.ibiod.2020.104933

    Article  Google Scholar 

  27. P. Bøllingtoft and M. C. Christensen, ‘Early Gothic wall paintings: an investigation of painting techniques and materials of 13th-century mural paintings in a Danish village church’, in ICOM Committee for Conservation tenth triennial meeting, Washington, DC, 22–27 August 1993: preprints, Paris, 1993, pp. 531–535

  28. R. H. Brill, C. Felker-Dennis, H. Shirahata, E. C. Joel, ‘Lead Isotope Analyses of Some Chinese and Central Asian Pigments’, in Conservation of Ancient Sites on the Silk Road Los Angeles, Los Angeles, 1997, pp. 369–378, [Online]. Available at https://www.cmog.org/sites/default/files/collections/9D/9DB363B9-B3B8-4C29-8529-A3D12D6B3775.pdf.

  29. S. Daniilia et al., Panselinos’ Byzantine wall paintings in the Protaton Church, Mount Athos, Greece: a technical examination. J. Cult. Herit. 1(2), 91–110 (2000). https://doi.org/10.1016/S1296-2074(00)00164-3

    Article  Google Scholar 

  30. M. Matteinim, A. Moles, ‘The reconversion of oxidized white lead in mural paintings: a control after a five year period’, in Preprints, Ottawa, 1981, vol. 1, p. 81/15/ 1–8.

  31. M. Matteini, A. Moles, S. Giovannoni, ‘The reconversion of oxidized white lead in the paintings by Signorelli in the Abbey of Monteoliveto Maggiore. Study of the phenomenon and preliminary applications’, in Scientific methodologies applied to works of art, Florence, 1986, pp. 113–115.

  32. S. Aze, P. Delaporte, J.-M. Vallet, V. Detalle, O. Grauby, A. Baronnet, ‘Towards the restoration of darkened red lead containing mural paintings: a preliminary study of the β-PbO2 to Pb3O4 reversion by laser irradiation’, in Proceedings of the international conference LACONA VII, Madrid, 21/09 2007, pp. 11–13.https://doi.org/10.1201/9780203882085

  33. S. Aze, J. Vallet, V. Detalle, and O. Grauby, ‘Reversion of darkened red lead-containing wall paintings by means of cw-laser irradiation: In situ tests and first application’, Lasers Conserv. Artworks VIII, p. 129, 2010.

  34. P. Bromblet, M. Labouré, G. Orial, Diversity of the cleaning procedures including laser for the restoration of carved portals in France over the last 10 years. J. Cult. Herit. 4, 17–26 (2003). https://doi.org/10.1016/S1296-2074(02)01222-0

    Article  Google Scholar 

  35. C. Rodriguez-Navarro et al., Laser cleaning of stone materials: an overview of current research. Stud. Conserv. 48(sup1), 65–82 (2003). https://doi.org/10.1179/sic.2003.48.Supplement-1.65

    Article  Google Scholar 

  36. S. Siano et al., Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Appl. Phys. A 106(2), 419–446 (2012). https://doi.org/10.1007/s00339-011-6690-8

    Article  ADS  Google Scholar 

  37. K. Gavrichev, A. Bolshakov, D. Kondakov, A. Khoroshilov, S. Denisov, Thermal transformations of lead oxides. J. Therm. Anal. Calorim. 92(3), 857–863 (2008). https://doi.org/10.1007/s10973-007-8590-x

    Article  Google Scholar 

  38. G.L. Clark, N.C. Schieltz, T.T. Quirke, A new study of the preparation and properties of the higher oxides of lead. J. Am. Chem. Soc. 59(11), 2305–2308 (1937). https://doi.org/10.1021/ja01290a063

    Article  Google Scholar 

  39. S. Kumar, M. Sharon, S.R. Jawalekar, Preparation of a thin film of Pb3O4 by thermal treatment of PbO2 film. Thin Solid Films 195(1–2), 273–278 (1991). https://doi.org/10.1016/0040-6090(91)90278-6

    Article  ADS  Google Scholar 

  40. R. Faivre, R. Weiss, Composés du plomb et de l’oxygène, in Nouveau traité de chimie minérale, vol. VIII, (Masson et Cie, Paris, 1963), p. 469

    Google Scholar 

  41. D.A. Ciomartan, R.J.H. Clark, L.J. McDonald, M. Odlyha, Studies on the thermal decomposition of basic lead(II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. J. Chem. Soc. Dalton Trans. 18, 3639–3645 (1996). https://doi.org/10.1039/dt9960003639

    Article  Google Scholar 

  42. D. Risold, J.-I. Nagata, R.O. Suzuki, Thermodynamic description of the Pb-O system. J. Phase Equilibria 19(3), 213–233 (1998). https://doi.org/10.1361/105497198770342238

    Article  Google Scholar 

  43. E.M. Otto, Equilibrium pressures of oxygen over oxides of lead at various temperatures. J. Electrochem. Soc. 113(6), 525 (1966). https://doi.org/10.1149/1.2424016

    Article  ADS  Google Scholar 

  44. V.V. Aleksandrov, V.V. Boldyrev, V.V. Marusin, V.G. Morozov, V.S. Solovjev, T.M. Rozhentseva, Effect of heating rate on the thermal decomposition of lead dioxide. J. Therm. Anal. 13(2), 205–212 (1978). https://doi.org/10.1007/BF01912292

    Article  Google Scholar 

  45. C. Real, M. Alcala, J. Criado, Correlation between the structural defects induced by ball-milling of Pb3O4 and the structure of PbO yielded from its thermal decomposition. Solid State Ion. 63–65, 702–706 (1993). https://doi.org/10.1016/0167-2738(93)90183-4

    Article  Google Scholar 

  46. L. Burgio, R.J.H. Clark, S. Firth, Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126(2), 222–227 (2001). https://doi.org/10.1039/b008302j

    Article  ADS  Google Scholar 

  47. A. Godelitsas, J.M. Astilleros, K. Hallam, S. Harissopoulos, A. Putnis, Interaction of calcium carbonates with lead in aqueous solutions. Environ. Sci. Technol. 37(15), 3351–3360 (2003). https://doi.org/10.1021/es020238i

    Article  ADS  Google Scholar 

  48. Y.J. Lee, J.W. Kim, M.S. Han, D.I. Kang, Effect to the discoloration of lead based pigments by the factors of air environment. J. Conserv. Sci. 34(2), 69–76 (2018). https://doi.org/10.12654/JCS.2018.34.2.01

    Article  Google Scholar 

  49. V. Gonzalez, G. Wallez, T. Calligaro, D. Gourier, M. Menu, Synthesizing lead white pigments by lead corrosion: new insights into the ancient manufacturing processes. Corros. Sci. 146, 10–17 (2019). https://doi.org/10.1016/j.corsci.2018.10.033

    Article  Google Scholar 

  50. M. Stols-Witlox, L. Megens, L. Carlyle, ‘“To prepare white excellent...”: reconstructions investigating the influence of washing, grinding and decanting of stack-process lead white on pigment composition and particle size’, in The artist’s process: technology and interpretation, London, 2012, pp. 112–129. [Online]. Available at https://hdl.handle.net/11245/1.406527. Accessed: May 07, 2020

  51. V. Gonzalez et al., Synchrotron-based high angle resolution and high lateral resolution X-ray diffraction: revealing lead white pigment qualities in old masters paintings. Anal. Chem. 89(24), 13203–13211 (2017). https://doi.org/10.1021/acs.analchem.7b02949

    Article  Google Scholar 

  52. E. Welcomme et al., Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl. Phys. A 89(4), 825–832 (2007). https://doi.org/10.1007/s00339-007-4217-0

    Article  ADS  Google Scholar 

  53. P. Holakooei, A.-H. Karimy, Early Islamic pigments used at the Masjid-i Jame of Fahraj, Iran: a possible use of black plattnerite. J. Archaeol. Sci. 54, 217–227 (2015). https://doi.org/10.1016/j.jas.2014.12.001

    Article  Google Scholar 

  54. M. Gutman, M. Lesar-Kikelj, A. Mladenovič, V. Čobal-Sedmak, A. Križnar, S. Kramar, Raman microspectroscopic analysis of pigments of the Gothic wall painting from the Dominican Monastery in Ptuj (Slovenia): gothic wall painting from the Dominican Monastery in Ptuj. J. Raman Spectrosc. 45(11–12), 1103–1109 (2014). https://doi.org/10.1002/jrs.4628

    Article  ADS  Google Scholar 

  55. H. C. Howard, ‘Techniques of the Romanesque and Gothic Wall Paintings in the Holy Sepulchre Chapel, Winchester Cathedral’, in Historical painting techniques, materials, and studio practice: preprints of a symposium, University of Leiden, the Netherlands, 26–29 June, 1995, A. Wallert, E. Hermens, and M. Peek, Eds. Marina Del Rey, Calif.: Getty Conservation Institute, 1995, pp. 91–104.

  56. K.F. Gebremariam, L. Kvittingen, F.-G. Banica, Application of a portable XRF analyzer to investigate the medieval wall paintings of Yemrehanna Krestos Church, Ethiopia: Portable XRF for the study of murals of Yemrehanna Krestos Church. X-Ray Spectrom. 42(6), 462–469 (2013). https://doi.org/10.1002/xrs.2504

    Article  ADS  Google Scholar 

  57. C. Bläuer, A.T. Keller, Mainly red and a hidden blue—laboratory and MSI investigations on the Carolingian wall paintings in the Chapel of the Holy Cross of Müstair (Switzerland). J. Cult. Herit. 42, 72–80 (2020). https://doi.org/10.1016/j.culher.2019.07.024

    Article  Google Scholar 

  58. A. Perardi, L. Appolonia, P. Mirti, Non-destructive in situ determination of pigments in 15th century wall paintings by Raman microscopy. Anal. Chim. Acta 480(2), 317–325 (2003). https://doi.org/10.1016/S0003-2670(02)01660-4

    Article  Google Scholar 

  59. T. Rosado, M. Gil, J. Mirão, A. Candeias, A.T. Caldeira, Darkening on lead-based pigments: microbiological contribution. Color Res. Appl. 41(3), 294–298 (2016). https://doi.org/10.1002/col.22014

    Article  Google Scholar 

  60. C. Andalò et al., The beautiful “Trionfo d’Amore” attributed to Botticelli: a chemical characterisation by proton-induced X-ray emission and micro-Raman spectroscopy. Anal. Chim. Acta 429(2), 279–286 (2001). https://doi.org/10.1016/S0003-2670(00)01292-7

    Article  Google Scholar 

  61. M. Bicchieri, M. Nardone, A. Sodo, Application of micro-Raman spectroscopy to the study of an illuminated medieval manuscript. J. Cult. Herit. 1, S277–S279 (2000). https://doi.org/10.1016/S1296-2074(00)00175-8

    Article  Google Scholar 

  62. A. De Santis, E. Mattei, C. Pelosi, Micro-Raman and stratigraphic studies of the paintings on the “Cembalo” model musical instrument (a.d. 1650) and laser-induced degradation of the detected pigments. J. Raman Spectrosc. 38(10), 1368–1378 (2007). https://doi.org/10.1002/jrs.1777

    Article  ADS  Google Scholar 

  63. M. Malagodi, E. Basso, R. Avagliano, M. Licchelli, Surface coating on Bertesi’s wooden bas relief (seventeenth century). Surf. Eng. 29(2), 107–113 (2013). https://doi.org/10.1179/1743294412Y.0000000067

    Article  Google Scholar 

  64. M.-C. Bernard, V. Costa, S. Joiret, On unexpected colour of lead sculptures in Queluz: degradation of lead white. Corros. Eng. Sci. Technol. 45(5), 341–344 (2010). https://doi.org/10.1179/147842210X12732285051276

    Article  Google Scholar 

  65. J.P. Carr, N.A. Hampson, Lead dioxide electrode. Chem. Rev. 72(6), 679–703 (1972). https://doi.org/10.1021/cr60280a003

    Article  Google Scholar 

  66. D.A. Lytle, M.R. Schock, K. Scheckel, The inhibition of Pb(IV) oxide formation in chlorinated water by orthophosphate. Environ. Sci. Technol. 43(17), 6624–6631 (2009). https://doi.org/10.1021/es900399m

    Article  ADS  Google Scholar 

  67. Y. Zhang, Y.-P. Lin, Determination of PbO2 formation kinetics from the chlorination of Pb(II) carbonate solids via direct PbO2 measurement. Environ. Sci. Technol. 45(6), 2338–2344 (2011). https://doi.org/10.1021/es1039826

    Article  ADS  Google Scholar 

  68. C.W. Beck, Differential thermal analysis curves of carbonate minerals. Am. Mineral. 35, 985–1013 (1950)

    Google Scholar 

  69. M. San Andrés, J. M. De la Roja, S. D. Dornheim, V. G. Baonza, ‘Litharge and massicot: thermal decomposition synthetic route for basic lead(II) carbonate and Raman spectroscopy analysis’, in Proceedings of the international conference LACONA VII, Madrid, 21/09 2007, pp. 89–94. https://doi.org/10.1201/9780203882085-18

  70. D.A. Grisafe, W.B. White, Phase relations in the system PbO-CO2 and the decomposition of cerussite. Am. Mineral. 49(9–10), 1184–1198 (1964)

    Google Scholar 

  71. S.S.J. Warne, P. Bayliss, The differential thermal analysis of cerussite. Am Mineral 47(9–10), 1011–1023 (1962)

    Google Scholar 

  72. N.J. Flemming, V.J. Lopata, B.L. Sanipelli, P. Taylor, Thermal decomposition of basic lead carbonates: a comparison of hydrocerussite and plumbonacrite. Thermochim. Acta 81, 1–8 (1984). https://doi.org/10.1016/0040-6031(84)85104-7

    Article  Google Scholar 

  73. G. Pannetier, S. Fénistein, G. Djega-Mariadassou, Étude de la décomposition thermique du carbonate de plomb. Bull. Société Chim. Fr. 31(124), 701–705 (1964)

    Google Scholar 

  74. G. Pannetier, S. Fénistein, L. Davignon, ‘Pyrolyse de l’hydrocérusite 2 PbCO3, Pb(OH)2. Étude radiocristallographique d’un nouveau carbonate basique de plomb. Bull. Société Chim. Fr. 32(19), 109–111 (1965)

    Google Scholar 

  75. J. Hrbek, Induction heating of thin nonmagnetic sheets in transverse time-variable magnetic field. Acta Tech. CSAV Ceskoslovensk Akad. Ved 60, 15–29 (2015)

    Google Scholar 

  76. V. de Seauve, A. Semerok, O. Grauby, V. Detalle, and J.-M. Vallet, ‘Modelling and IR thermal monitoring of the laser reconversion of blackened pigments’, presented at the Colloque international AIC 2020, Avignon, To be published.

  77. A. Morineau, M. Stefanaggi, A statistical approach to the problem of frescos: the French experience. J. Ital. Stat. Soc. 4(1), 37–53 (1995). https://doi.org/10.1007/BF02589058

    Article  MATH  Google Scholar 

  78. S. Pham Tu Quoc, ‘Caractérisation des propriétés d’un matériau par radiométrie photothermique modulée’, Theses, Université Paris Sud—Paris XI, 2014.

  79. F. Platel, AntiSecos. MetGen, 2014. https://metgen.pagesperso-orange.fr/softfr05.htm

  80. I. Costantini, P.P. Lottici, K. Castro, J.M. Madariaga, Use of temperature controlled stage confocal Raman microscopy to study phase transition of lead dioxide (plattnerite). Minerals 10(5), 468–484 (2020). https://doi.org/10.3390/min10050468

    Article  ADS  Google Scholar 

  81. F. J. Schmidt, ‘Process for the electrolytic formation of lead dioxide solar absorption coating. United States. https://www.osti.gov/biblio/6204612

  82. L. H. Hemmerdinger and R. J. Hembach, ‘Spacecraft thermal design’, in andbook of Military Infrared Technology, W. L. Wolfe, Ed. The University of Michigan, 1965, pp. 783–824.

  83. A. Coccato, L. Moens, P. Vandenabeele, On the stability of mediaeval inorganic pigments: a literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit. Sci. 5(1), 12 (2017). https://doi.org/10.1186/s40494-017-0125-6

    Article  Google Scholar 

  84. S. Aze, J.-M. Vallet, A. Baronnet, O. Grauby, The fading of red lead pigment in wall paintings: tracking the physico-chemical transformations by means of complementary micro-analysis techniques. Eur. J. Mineral. 18(6), 835–843 (2006). https://doi.org/10.1127/0935-1221/2006/0018-0835

    Article  ADS  Google Scholar 

  85. Y. Zhao, J. Wang, A. Pan, L. He, S. Simon, Degradation of red lead pigment in the oil painting during UV aging. Color Res. Appl. 44(5), 790–797 (2019). https://doi.org/10.1002/col.22386

    Article  Google Scholar 

  86. E. Ayalew, K. Janssens, K. De Wael, Unraveling the Reactivity of minium toward bicarbonate and the role of lead oxides therein. Anal. Chem. 88(3), 1564–1569 (2016). https://doi.org/10.1021/acs.analchem.5b02503

    Article  Google Scholar 

  87. P. Taylor, V.J. Lopata, Stability and solubility relationships between some solids in the system PbO–CO2–H2O. Can. J. Chem. 62(3), 395–402 (1984). https://doi.org/10.1139/v84-070

    Article  Google Scholar 

  88. J.R. Clarke, J.E. Greene, Reactively evaporated photoconductive PbO: Phase transformations induced by water vapor. Thin Solid Films 66(3), 339–349 (1980). https://doi.org/10.1016/0040-6090(80)90387-9

    Article  ADS  Google Scholar 

  89. F. Vanmeert, G. Van der Snickt, K. Janssens, Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh Painting. Angew. Chem. 127(12), 3678–3681 (2015). https://doi.org/10.1002/ange.201411691

    Article  ADS  Google Scholar 

  90. M.I. Cooper, P.S. Fowles, C.C. Tang, Analysis of the laser-induced discoloration of lead white pigment. Appl. Surf. Sci. 201(1–4), 75–84 (2002). https://doi.org/10.1016/S0169-4332(02)00499-3

    Article  ADS  Google Scholar 

  91. T. Stratoudaki, A. Manousaki, K. Melesanaki, V. Zafiropulos, G. Orial, Study on the discolouration of pigments induced by laser irradiation. Rev. Métallurgie 98(9), 795–801 (2001). https://doi.org/10.1051/metal:2001125

    Article  Google Scholar 

  92. V. Zafiropulos, T. Stratoudaki, A. Manousaki, K. Melesanaki, G. Orial, Discoloration of pigments induced by laser irradiation. Surf. Eng. 17(3), 249–253 (2001). https://doi.org/10.1179/026708401101517773

    Article  Google Scholar 

  93. R. Bruder, D. L’Hermite, A. Semerok, L. Salmon, V. Detalle, Near-crater discoloration of white lead in wall paintings during laser induced breakdown spectroscopy analysis. Spectrochim. Acta Part B At. Spectrosc. 62(12), 1590–1596 (2007). https://doi.org/10.1016/j.sab.2007.10.031

    Article  ADS  Google Scholar 

  94. P. Pouli, D.C. Emmony, C.E. Madden, I. Sutherland, Analysis of the laser-induced reduction mechanisms of medieval pigments. Appl. Surf. Sci. 173(3–4), 252–261 (2001). https://doi.org/10.1016/S0169-4332(00)00909-0

    Article  ADS  Google Scholar 

  95. M. Chappé, J. Hildenhagen, K. Dickmann, M. Bredol, Laser irradiation of medieval pigments at IR, VIS and UV wavelengths. J. Cult. Herit. 4, 264–270 (2003). https://doi.org/10.1016/S1296-2074(02)01206-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the French Ministry of Culture and Communication for financial support, and the PLANI group from the LILM laboratory (CEA) which supplied their experimental set up. This work was supported by the Paris Seine Graduate School Humanities, Creation, Heritage, Investissement d'Avenir ANR-17-EURE-0021 – Foundation for Cultural Heritage Science. The authors also wish to acknowledge Kamel Mouhoubi (Université de Reims, EA 7548 ITHEMM) for the interesting discussions and details about IR thermography and the determination of emissivity. The authors would also like to thank Philippe Delaporte (Aix-Marseille Université, CNRS - UMR 7341 LP3) and Alain Baronnet (CINaM) for their contribution to preliminary studies. Lastly, the authors would like to thank Emmanuel André (LP3) for granting access to the Shimadzu UV–visible–NIR spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théa de Seauve.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Seauve, T., Detalle, V., Semerok, A. et al. Continuous wave laser thermal restoration of oxidized lead-based pigments in mural paintings. Appl. Phys. B 127, 162 (2021). https://doi.org/10.1007/s00340-021-07702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07702-w

Navigation