Skip to main content
Log in

Dynamics of moving cavity solitons in two-level laser system from symmetric gaussian input: vectorial cubic-quintic complex Ginzburg–Landau equation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper studies the interaction of an electromagnetic field with the matter in a laser cavity without assuming a fixed direction of the transverse electric field, described by the two-level Maxwell–Bloch equations. The derivation of the laser (3+1)-dimensional vectorial cubic-quintic complex Ginzburg–Landau equation is reported using a perturbative nonlinear analysis performed near the laser threshold. Considering the vector (2+1)D cubic-quintic complex Ginzburg–Landau equation, the stability of the moving dissipative solitons in the laser cavity is analyzed. Using the variational approximation, stability conditions and propagation trajectories of dissipative solitons are derived. Direct numerical simulations fully confirm analytical predictions of dissipative solitons trapped in an effective potential well. Potential applications of the obtained results related to spatial dissipative solitons, may be found in class B laser by considering solitons as individual addressable and shift registers of the all-optical data processing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.T. Arecchi, S. Boccaletti, P.L. Ramazza, Pattern formation and competition. Phys. Rep. 318, 1–83 (1999)

    Article  ADS  Google Scholar 

  2. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni, Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985)

    Article  ADS  Google Scholar 

  3. S. Ciuchi, F. de Pasquale, M. San Miguel, N.B. Abraham, Phase and amplitude correlations induced by the switch-on chirp of a detuned laser. Phys. Rev. A 44, 7657–7668 (1991)

  4. E. Hernandez-Garcia, R. Toral, M.S. Miguel, Intensity correlation functions for the colored gain-noise model of dye lasers. Phys. Rev. A 42, 6823–6830 (1990)

    Article  ADS  Google Scholar 

  5. G.P. Agrawal, N.K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand 426 Reinhold, New York, 1986)

  6. C.O. Weiss, R. Vilaseca, Dynamics of Lasers (VCH Publishers, Weinheim, 1991)

    Google Scholar 

  7. F. Strumia, in Advances in Laser Spectroscopy, ed. by F.T. Arecchi, F. Strumia, H. Walther (Plenum Press, New York, 1983), p. 267

  8. P. Colet, R. Roy, Digital communication with synchronized chaotic lasers. J. Opt. Lett. 19, 2056–2058 (1994)

    Article  ADS  Google Scholar 

  9. L. Lugiato, F. Prati, M. Brambilla, Nonlinear Optical Systems (Cambridge University Press, Cambridge, 2015)

    Book  MATH  Google Scholar 

  10. W.E. Lamb Jr., Theory of an optical maser. Phys. Rev. 134, A1429–A1450 (1964)

    Article  ADS  Google Scholar 

  11. H. Haken, Laser Theory (Springer, Berlin, 1984)

    MATH  Google Scholar 

  12. I. Leyva, J.M. Guerra, Time-resolved pattern evolution in a large-aperture class A laser. Phys. Rev. A 66, 023820 (2002)

    Article  ADS  Google Scholar 

  13. F. Encinas-Sanz, I. Leyva, J.M. Guerra, Time resolved pattern evolution in a large aperture laser. Phys. Rev. Lett. 84, 883–886 (2000)

    Article  ADS  Google Scholar 

  14. M. Riley, T.D. Padrick, R. Palmer, Multilevel paraxial Maxwell–Bloch equation description of short pulse amplification in the atomic iodine laser. IEEE J. Quantum Electron. QE 15, 178–189 (1979)

    Article  ADS  Google Scholar 

  15. P. Coullet, L. Gil, F. Rocca, Optical vortices. Opt. Commun. 73, 403–408 (1989)

    Article  ADS  Google Scholar 

  16. K. Staliunas, C.O. Weiss, Tilted and standing waves and vortex lattices in class-A lasers. Phys. D 81, 79–93 (1995)

    Article  MATH  Google Scholar 

  17. S.C. Mancas, S.R. Choudhury, Traveling wavetrains in the complex cubicquintic Ginzburg–Landau equation. Chaos Solitons Fractals 28, 834–843 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Liu, S. Liu, Z. Fu, Q. Zhao, The Hopf bifurcation and spiral wave solution of the complex Ginzburg–Landau equation. Chaos Solitons Fractals 13, 1377–1381 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Jun, G. Ji-Hua, W. Chun-Ni, S. Jun-Yan, Control spiral and multi-spiral wave in the complex Ginburg–Landau equation. Chaos Solitons Fractals 38, 521–530 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K. Staliunas, Laser Ginzburg–Landau equation and laser hydrodynamics. Phys. Rev. A 48, 1573–1581 (1993)

    Article  ADS  Google Scholar 

  21. G.L. Oppo, G. D’Alessandro, W.J. Firth, Spatiotemporal instabilities of lasers in models reduced via center manifold techniques. Phys. Rev. A 44, 4712–4720 (1991)

  22. J.M. Soto-Crespo, N.N. Akhmediev, V.V. Afanasjev, Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B 13, 1439–1449 (1996)

    Article  ADS  Google Scholar 

  23. J. Lega, J.V. Moloney, A.C. Newell, Swift–Hohenberg equation for lasers. Phys. Rev. Lett. 73, 2978–2981 (1994)

    Article  ADS  Google Scholar 

  24. M. Tlidi, M. Giorgiou, P. Mandel, Transverse patterns in nascent optical bistability. Phys. Rev. A 48, 4605–4609 (1993)

    Article  ADS  Google Scholar 

  25. H.A. Haus, A. Mecozzi, Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993)

    Article  ADS  Google Scholar 

  26. C.R. Menyuk, J.K. Wahlstrand, J. Willits, R.P. Smith, T.R. Schibli, S.T. Cundiff, Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling. Opt. Express 15, 6677–6689 (2007)

    Article  ADS  Google Scholar 

  27. W.W. Hsiang, C.Y. Lin, Y. Lai, Stable new bound soliton pairs in a 10 GHz hybrid frequency modulation mode-locked Er-fiber laser. Opt. Lett. 31, 1627–1629 (2006)

    Article  ADS  Google Scholar 

  28. W. Chang, N. Akhmediev, S. Wabnitz, Effect of an external periodic potential on pairs of dissipative solitons. Phys. Rev. A 80, 013815 (2009)

    Article  ADS  Google Scholar 

  29. J.N. Kutz, Mode-locked soliton lasers. SIAM Rev. 48, 629–678 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J.M. Soto-Crespo, N. Akhmediev, A. Ankiewicz, Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937–2940 (2000)

    Article  ADS  Google Scholar 

  31. L. Gil, Vector order parameter for an unpolarized laser and its vectorial topological defects. Phys. Rev. Lett. 70, 162–165 (1993)

    Article  ADS  Google Scholar 

  32. A. Amengual, E. Hernandez-Garcia, R. Montagne, M. San Miguel, Synchronization of spatiotemporal chaos: the regime of coupled spatiotemporal intermittency. Phys. Rev. Lett. 78, 4379–4382 (1997)

    Article  ADS  Google Scholar 

  33. E. Hernandez-Garcia, M. Hoyuelos, P. Colet, M. San Miguel, R. Montagne, Spatiotemporal chaos, localized structures and synchronization in the vector complex Ginzburg–Landau equation. Int. J. Bifurc. Chaos 9, 2257–2264 (1999)

    Article  Google Scholar 

  34. M. Hoyuelos, E. Hernandez-Garcia, P. Colet, M.S. Miguel, Defect-freezing and defect-unbinding in the vector complex Ginzburg–Landau equation. Comput. Phys. Comm. 121, 414–419 (1999)

    Article  ADS  Google Scholar 

  35. E. Hernandez-Garcia, M. Hoyuelos, P. Colet, M.S. Miguel, Dynamics of localized structures in vectorial waves. Phys. Rev. Lett. 85, 744–747 (2000)

    Article  ADS  Google Scholar 

  36. M. Hoyuelos, E. Hernandez-Garcia, P. Colet, M.S. Miguel, Dynamics of defects in the vector complex Ginzburg–Landau equation. Phys. D 174, 176–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. W.-L. Zhu, Y.-J. He, Stability conditions for moving dissipative solitons in one- and multidimensional systems with a linear potential. Opt. Express 18, 17053–17058 (2010)

    Article  ADS  Google Scholar 

  38. M. Djoko, T.C. Kofane, Dissipative optical bullets modeled by the cubic-quintic-septic complex Ginzburg–Landau equation with higher-order dispersions. Commun. Nonlinear Sci Numer. Simul. 48, 179–199 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. M. Djoko, C.B. Tabi, T.C. Kofane, Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg–Landau equation in presence of higher-order dispersions. Chaos Solitons Fractals 147, 110957 (2021)

    Article  MathSciNet  Google Scholar 

  40. D. Mihalache, D. Mazilu, L.C. Crasovan, L. Torner, B.A. Malomed, F. Lederer, Three-dimensional walking spatiotemporal solitons in quadratic media. Phys. Rev. E 62, 7340–7347 (2000)

    Article  ADS  Google Scholar 

  41. B.A. Malomed, Multidimensional solitons: well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016)

    Article  Google Scholar 

  42. Y.V. Kartashov, G.E. Astrakharchik, B.A. Malomed, L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  43. D. Mihalache, Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  44. A. Djazet, C.B. Tabi, S.I. Fewo, T.C. Kofane, Vector dissipative light bullets in optical laser beam. Appl. Phys. B 126, 74 (2020)

    Article  ADS  Google Scholar 

  45. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986), p. 943, Eq. (50) and p. 946, Eq. (56)

  46. R.W. Boyd, Nonlinear Optics-Second Edition (Academic Press, New York, 2003)

    Google Scholar 

  47. A. Djazet, S.I. Fewo, C.B. Tabi, T.C. Kofane, On a laser (3+1)-dimensional vectorial cubic-quintic complex Ginzburg–Landau equation and modulational instability (2019). https://doi.org/10.20944/preprints201910.0171.v1

  48. L.A. Lugiato, G.L. Oppo, J.R. Tredicce, L.M. Narducci, M.A. Pernigo, Instabilities and spatial complexity in a laser. J. Opt. Soc. Am. B 7, 1019–1033 (1990)

    Article  ADS  Google Scholar 

  49. M. Hoyuelos, E. Hernandez-Garcia, P. Colet, M.S. Miguel, Dynamics of defects in the vector complex Ginzburg–Landau equation. Phys. D 174, 176–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. Kuramoto, in Chemical Oscillations, Waves and Turbulence, ed. by H. Haken. Springer Series in Synergetics, vol. 19 (Springer, Berlin, 1984)

  51. V. Skarka, N.B. Aleksic, H. Leblond, B.A. Malomed, D. Mihalache, Varieties of stable vortical solitons in Ginzburg–Landau media with radially inhomogeneous losses. Phys. Rev. Lett. 105, 213901 (2010)

    Article  ADS  Google Scholar 

  52. V. Skarka, N.B. Aleksic, M. Lekic, B.N. Aleksic, B.A. Malomed, D. Mihalache, H. Leblond, Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking. Phys. Rev. A 90, 023845 (2014)

    Article  ADS  Google Scholar 

  53. M.D. Mboumba, A.B. Moubissi, T.B. Ekogo, G.H. Ben-Bolie, T.C. Kofane, Variational approach for two-component condensates dynamics with two-and three-body interactions and external feeding. Int. J. Mod. Phys. B 29, 1550202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. S.I. Fewo, C.M. Ngabireng, T.C. Kofane, Ultrashort optical solitons in the cubic-quintic complex Ginzburg–Landau equation with higher-order terms. J. Phys. Soc. 7, 074401 (2008)

    Article  ADS  Google Scholar 

  55. M. Djoko, T.C. Kofane, The cubic-quintic-septic complex Ginzburg–Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions. Opt. Commun. 416, 190–201 (2018)

    Article  ADS  Google Scholar 

  56. Y. Qiu, B.A. Malomed, D. Mihalache, X. Zhu, L. Zhang, Y. He, Soliton dynamics in a fractional complex Ginzburg–Landau model. Chaos Solitons Fractals 131, 109471 (2020)

    Article  MathSciNet  Google Scholar 

  57. V. Skarka, D.V. Timotijevic, N.B. Aleksic, Extension of the stability criterion for dissipative optical soliton solutions of a two-dimensional Ginzburg–Landau system generated from asymmetric inputs. J. Opt. A Pure Appl. Opt. 10, 075102 (2008)

    Article  ADS  Google Scholar 

  58. V. Skarka, V.I. Berezhehiani, R. Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E. 56, 1080–1087 (1997)

    Article  ADS  Google Scholar 

  59. N. Akhmediev, J.M. Soto-Crespo, G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in model-locked laser: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 05602 (2001)

    Article  Google Scholar 

  60. L.-C. Crasovan, B.A. Malomed, D. Mihalache, Stable vortex solitons in the two-dimensional Ginzburg–Landau equation. Phys. Rev. E 63, 016605 (2001)

    Article  ADS  MATH  Google Scholar 

  61. F. Encinas-Sanz, S. Melle, O.G. Calderon, Time-resolved dynamics of two-dimensional transverse patterns in broad area lasers. Phys. Rev. Lett. 93, 213904 (2004)

    Article  ADS  Google Scholar 

  62. J. Ohtsubo, Semiconductor Lasers Stability, Instability and Chaos. Springer in Optical Sciences, vol. 111 (2013)

  63. K.J. Kuhn, Laser Engineering (Prentice Hall, Hoboken, 1998)

    Google Scholar 

  64. H. Kapteyn, O. Cohen, I. Christov, M. Murnane, Harnessing attosecond science in the quest for coherent X-rays. Science 317, 775–778 (2007)

    Article  ADS  Google Scholar 

  65. S.D. Cohen, A. Aragoneses, D. Rontani, M.C. Torrent, C. Masoller, D.J. Gauthier, Multidimensional subwavelength position sensing using a semiconductor laser with optical feedback. Opt. Lett. 38, 4331–4334 (2013)

    Article  ADS  Google Scholar 

  66. D. Dangoisse, D. Hennequin, C. Lepers, E. Louvergneaux, P. Gloriex, Two-dimensional optical lattices in a laser. Phys. Rev. A 46, 5955–5958 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors (S. I. Fewo, A. Djazet and T. C. Kofané) would like to thank the CETIC (University of YaoundeI, Cameroon) for their helpful support. The work by CBT is supported by the Botswana International University of Science and Technology under the grant DVC/RDI/2/1/16I (25). CBT thanks the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant no.NSF PHY-1748958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Djazet.

Appendix

Appendix

1.1 A Multimodal method

The equations describing the interaction of the electromagnetic field with the matter are given by the Maxwell–Bloch Eqs. (1a)–(1c). The quantities E, P and D are taken as follows:

$$\begin{aligned} \mathbf{E}= &\, \sum \limits _{j = 1}^\infty {{ \in ^j}\sum \limits _{n = - j}^{ + j} {\mathbf{E }_j^n(r)\exp (inwt),} } \end{aligned}$$
(24)
$$\begin{aligned} \mathbf{P}= &\, \sum \limits _{j = 1}^\infty {{ \in ^j}\sum \limits _{n = - j}^{ + j} {\mathbf{P }_j^n(r)\exp (inwt),} } \end{aligned}$$
(25)
$$\begin{aligned} D= &\, \sum \limits _{j = 1}^\infty {{ \in ^j}\sum \limits _{n = - j}^{ + j} {D_j^n(r)\exp (inwt),} } \end{aligned}$$
(26)

under the conditions \(\mathbf{E} _j^{ - n} = {(\mathbf{E} _j^n)^*}\), \(\mathbf{P} _j^{ -n} = {(\mathbf{P} _j^n)^*}\), and \(D_j^{ - n} = {(D_j^n)^*}\). We assume that the permanent electric field such that

$$\begin{aligned} \forall j > 0 \text { leads to} \,\mathbf{E} _j^0 =0.\end{aligned}$$
(27)

We focus our study to the case \(E=E_1^{1}\), \(D_1^{0}=D_0\). In the presence of the intense field in the system, we have \(D_0<<\frac{2}{{\hbar {w_a}}}\left( {E\cdot \frac{{\partial P}}{{\partial t}}} \right) \). Inserting the relation of P and D given by Eqs. (25) and (26) into Eqs. (1b) and (1c), it comes, for any \(e^{inw_at}\), the following relations:

$$\begin{aligned}&{w_a}\left[ {(1 - {n^2}){w_a} + i{\gamma _ \bot }} \right] (\epsilon P_1^n + {\epsilon ^2}P_2^n + {\epsilon ^3}P_3^n + \cdots )\nonumber \\&\quad = - g\sum \limits _{p + q = n} {(\epsilon D_1^q } + {\epsilon ^2}D_2^q)(\epsilon E_1^p + {\epsilon ^2}E_2^p) \end{aligned}$$
(28)
$$\begin{aligned}&({\gamma _\parallel } + in{w_a})(\epsilon D_1^n + {\epsilon ^2}D_2^n + \cdots ) \nonumber \\&\quad = \frac{{2i}}{\hbar }\sum \limits _{p + q = n} q (\epsilon E_1^q + {\epsilon ^2}E_2^q + \cdots )\nonumber \\&\qquad \times (\varepsilon P_1^q+ {\epsilon ^2}P_2^q + {\epsilon ^3}P_3^q + \cdots ) \end{aligned}$$
(29)

where p and q can take negative values, and \(p+q=n\). For any power of \(\epsilon \), solving these equations leads to:

$$\begin{aligned}&{\epsilon ^1},n = 0:\quad \mathbf{P} _1^0 = 0, \quad D_1^0 = {D_0}, \end{aligned}$$
(30)
$$\begin{aligned} {\epsilon ^1},&n = 1:\quad \mathbf{P} _1^1 = \frac{1}{{{\mu _0}{c^2}}}\left( { - 1 + \frac{{ik}}{{{w_a}}}} \right) \mathbf{E} _1^1,\quad D_1^1 = 0, \end{aligned}$$
(31)
$$\begin{aligned}{\epsilon ^2}, &n = 0:\quad \mathbf{P} _2^0 = 0,\quad D_2^0 = \frac{{2i}}{{\hbar {\gamma _\parallel }}}\left( \mathbf{P _1^1\mathbf{E} _1^{ - 1} - \mathbf{P} _1^{ - 1}{} \mathbf{E} _1^1} \right) , \end{aligned}$$
(32)
$$\begin{aligned}&{\epsilon ^2},n = 1:\quad \mathbf{P} _2^1 = \frac{{ig}}{{{\gamma _ \bot }{w_a}}}\left( {D_1^0\mathbf{E} _1^1} \right) , \quad D_2^1 = 0, \end{aligned}$$
(33)
$$\begin{aligned}&{\epsilon ^2},n = 2:\quad \mathbf{P} _2^2 = 0, \quad D_2^2 = \frac{{2i}}{{\hbar \left( {{\gamma _\parallel } + 2i{w_a}} \right) }}\left( \mathbf{P _1^1\mathbf{E} _1^1} \right) , \end{aligned}$$
(34)
$$\begin{aligned}&{\epsilon ^3},n = 0:\quad \mathbf{P} _3^0 = 0,\quad D_3^0 = \frac{{2i}}{{\hbar {\gamma _\parallel }}}\left( \mathbf{P _2^1\mathbf{E} _1^{ - 1} - \mathbf{P} _2^{ - 1}{} \mathbf{E} _1^1} \right) , \end{aligned}$$
(35)
$$\begin{aligned}&{\epsilon ^3},n = 1:\quad \mathbf{P} _3^1 = \frac{{ig}}{{{\gamma _ \bot }{w_a}}}\left( {D_2^0\mathbf{E} _1^1 + D_2^2\mathbf{E} _1^{ - 1}} \right) , \quad \quad D_3^1 = 0, \end{aligned}$$
(36)
$$\begin{aligned}&{\epsilon ^3},n = 2:\quad \mathbf{P} _3^2 = 0,\quad D_3^2 = \frac{{2i}}{{\hbar \left( {{\gamma _\parallel } + 2i{w_a}} \right) }}\left( \mathbf{P _2^1\mathbf{E} _1^1} \right) , \end{aligned}$$
(37)
$$\begin{aligned}&{\epsilon ^3},n = 3:\quad \mathbf{P} _3^3 = \frac{{ig}}{{\left( {8{w_a} -3i{\gamma _ \bot }} \right) }}\left( {D_2^2\mathbf{E} _1^1} \right) ,\quad D_3^3 = 0, \end{aligned}$$
(38)

with \( \mathbf{P} =\epsilon {\mathbf{P }_1}+{{\epsilon }^2}{\mathbf{P }_2}+{{\epsilon }^3}{\mathbf{P }_3}\)

where \(\mathbf{P} _1=\mathbf{P} _1^1,\quad \mathbf{P} _2=\mathbf{P} _2^1\)    

and

$$\begin{aligned} \mathbf{P} _3=\mathbf{P} _3^1+\mathbf{P} _3^3. \end{aligned}$$
(39)

In the following, we perform the nonlinear perturbation analysis near the laser threshold by introducing a small parameter \(\epsilon \) so that \(D_0=D_{0C}+\epsilon ^2{\tilde{D}}_0\) (\(\epsilon<<1\)), \((\xi ,\zeta )=\epsilon (x,y)\), \((Z,\tau )=\epsilon ^2(z,t)\) [31]. Moreover,

$$\begin{aligned} \left( \begin{array}{l} \mathbf{E} \\ \partial _{t}{} \mathbf{E} \\ \mathbf{P} \\ \partial _{t}{} \mathbf{P} \\ D \end{array} \right) = \left( \begin{array}{l} 0\\ 0\\ 0\\ 0\\ D_0 \end{array} \right) + \epsilon \left( \begin{array}{l} \mathbf{E} _1\\ \partial _{t}{} \mathbf{E} _1\\ \mathbf{P} _1\\ \partial _{t}{} \mathbf{P} _1\\ D_1 \end{array} \right) + \epsilon ^2 \left( \begin{array}{l} \mathbf{E} _2\\ \partial _{t}{} \mathbf{E} _2\\ \mathbf{P} _2\\ \partial {_t}{} \mathbf{P} _2\\ D_2 \end{array} \right) + \end{aligned}$$
(40)

with

$$\begin{aligned} \begin{array}{l} \left( \begin{array}{l} {\mathbf {E}_1}\\ {\partial _t}{\mathbf {E}_1}\\ {P_1}\\ {\partial _t}{\mathbf {P}_1}\\ {D_1} \end{array} \right) = \left( \begin{array}{l} A\\ i{w_a}\mathbf {A}\\ \frac{1}{{{\mu _0}{c^2}}}( - 1 + \frac{{ik}}{{{w_a}}})\mathbf {A}\\ \frac{{i{w_a}}}{{{\mu _0}{c^2}}}( - 1 + \frac{{ik}}{{{w_a}}})\mathbf {A}\\ 0 \end{array} \right) {{\mathop {\mathrm {e}}\nolimits } ^{i\left( {{w_{}}t - {k_c}z} \right) }} + c.c.,\;\;A \bot {\hat{Z}}. \end{array} \end{aligned}$$
(41)

From the MB equations, some algebraic manipulations yield the following solvability condition

$$\begin{aligned} {\kappa }\frac{{\partial \mathbf{E _1}}}{{\partial \tau }}= &\, - 2i{w_a}\frac{{\partial \mathbf{E _1}}}{{\partial \tau }} - 2i{w_a}c\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) \mathbf{E _1} \nonumber \\&- {\mu _0}{c^2}\left( {2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}} \right) , \end{aligned}$$
(42)
$$\begin{aligned} 2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}= &\, - {\gamma _ \bot }2\frac{{\partial \mathbf{P _1}}}{{\partial \tau }} - g\left( {{{{{\tilde{D}}}}_0} + {D_2}} \right) \mathbf{E _1}, \end{aligned}$$
(43)
$$\begin{aligned} \frac{{\partial {D_2}}}{{\partial t}}= &\, - {\gamma _\parallel }{D_2} + \frac{2}{{\hbar {w_a}}}\left( {\mathbf{E _1}.\frac{{\partial \mathbf{P _1}}}{{\partial t}}} \right) . \end{aligned}$$
(44)

\({D_2}\) is obtained by solving Eq. (44), and by combining Eqs. (42) and (43) just give

$$\begin{aligned} \frac{{\partial \mathbf{E _1}}}{{\partial \tau }}= &\, \frac{{2c({\gamma _ \bot } - i{w_a})}}{{k - {\gamma _ \bot } + 2i{w_a}}}\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) \mathbf{E _1}\nonumber \\&+\frac{{{\mu _0}{c^2}g}}{{k - {\gamma _ \bot } + 2i{w_a}}}\left( {{{{{\tilde{D}}}}_0} + {D_2}} \right) \mathbf{E} _1 \end{aligned}$$
(45)

The nonlinearities come from the interaction between the population inversion and the electric field. To analyze the higher order diffusive term in this system, the higher-order correction \(\gamma _{_ \bot }^2\frac{{{\partial ^2}\mathbf{P _1}}}{{\partial {\tau ^2}}}\) is needed to the polarization Eq. (43)

$$\begin{aligned} \kappa \frac{{\partial \mathbf{E _1}}}{{\partial \tau }}= &\, - 2i{w_a}\frac{{\partial \mathbf{E _1}}}{{\partial \tau }}\nonumber \\&- 2i{w_a}c\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) \mathbf{E _1} - {\mu _0}{c^2}\left( {2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}} \right) . \end{aligned}$$
(46)
$$\begin{aligned} 2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}= &\, - {\gamma _ \bot }\frac{{\partial \mathbf{P _1}}}{{\partial t}} + \gamma _ \bot ^2\frac{{{\partial ^2}\mathbf{P _1}}}{{\partial {\tau ^2}}} - g\left( {{{{{\tilde{D}}}}_0} + {D_2}} \right) \mathbf{E _1}. \end{aligned}$$
(47)
$$\begin{aligned} \frac{{\partial {D_2}}}{{\partial t}}= &\, - {\gamma _\parallel }{D_2} + \frac{2}{{\hbar {w_a}}}\left( {\mathbf{E _1}.\frac{{\partial \mathbf{P _1}}}{{\partial t}}} \right) . \end{aligned}$$
(48)

Substituting Eq. (47) into Eq. (46), we obtain

$$\begin{aligned}&(\kappa - {\gamma _ \bot } + 2i{w_a})\left[ {1 + \frac{{2\gamma _ \bot ^2}}{{\kappa - {\gamma _ \bot } + 2i{w_a}}}\left( \frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2\right) } \right] \nonumber \\&\quad \frac{{\partial \mathbf{E _1}}}{{\partial T}} = 2c\left( {{\gamma _ \bot } - i{w_a}} \right) \left( \frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2\right) \mathbf{E _1}+ {\mu _0}{c^2}g\left( {{{{{\tilde{D}}}}_0} + {D_2}} \right) \mathbf{E _1}. \end{aligned}$$
(49)

Multiplying both sides of Eq. (49 ) by

$$\begin{aligned} \left( \left( {\kappa - {\gamma _ \bot } + 2i{w_a}} \right) \left[ {1 + \frac{{2\gamma _ \bot ^2}}{{\kappa - {\gamma _ \bot } + 2i{w_a}}}\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) } \right] \right) ^{-1} \end{aligned}$$

leads to the following amplitude equation derived by Gil [31]:

$$\begin{aligned} \frac{\partial }{{\partial \tau }}{} \mathbf{A}= &\, {C_1}A + {C_2}\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _{_ \bot }^2} \right) \mathbf{A} + {C_3}{\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _{_ \bot }^2} \right) ^2}{} \mathbf{A} \nonumber \\&+ {C_4}\left( \mathbf{A \cdot \mathbf{A ^*}} \right) \mathbf{A} + {C_5}\left( \mathbf{A \cdot \mathbf{A} } \right) \mathbf{A ^*}, \end{aligned}$$
(50)

with

$$\begin{aligned} {C_1}= &\, \frac{{{\mu _0}{c^2}g{{{{\tilde{D}}}}_0}\left( {{\kappa } - {\gamma _ \bot } + 2i{w_a}} \right) }}{\nonumber }\\&\times {{\left( {{{({\kappa } - {\gamma _ \bot })}^2} + 4w_a^2} \right) }}, \end{aligned}$$
(51)
$$\begin{aligned} {C_2}= &\, - \frac{{2c\left( {{\gamma _ \bot }\left( {{\gamma _ \bot } - {\kappa }} \right) + 2w_a^2 +i{w_a}\left( {\kappa - 3{\gamma _ \bot }} \right) } \right) }}{\nonumber }\\&\times {{\left( {{{({\kappa } - {\gamma _ \bot })}^2} + 4w_a^2} \right) }} , \end{aligned}$$
(52)
$$\begin{aligned} {C_3}= &\, - \frac{{4{c^2}{\gamma _ \bot }\left( {\gamma _ \bot ^2\left( {2\kappa - {\gamma _ \bot }} \right) + {\kappa }\left( {{\kappa }{\gamma _ \bot } - 4w_a^2} \right) - i{\gamma _ \bot }\left( {3\gamma _ \bot ^2 + 4w_a^2 - {\kappa }\left( {2\gamma _ \bot ^2 -{\kappa }} \right) } \right) } \right) }}{\nonumber }\\&\times {{{{\left( {{{({\kappa } - {\gamma _ \bot })}^2} + 4w_a^2} \right) }^2}}} , \end{aligned}$$
(53)
$$\begin{aligned} {C_4}= &\, \frac{{4kg\left( { - \left( {{\kappa } - {\gamma _ \bot }} \right) + 2i{w_a}} \right) }}{\nonumber }\\&\times {{\hbar {w_a}{\gamma _\parallel }\left( {{{({\kappa } - {\gamma _ \bot })}^2} + 4w_a^2} \right) }}, \end{aligned}$$
(54)
$$\begin{aligned} {C_5}= &\, \frac{{2g\left( {{\gamma _\parallel }\left( {2w_a^2 + {\kappa }\left( {{\kappa } - \gamma _\parallel ^2} \right) } \right) - 2w_a^2\left( {{\kappa } + {\gamma _ \bot }} \right) - i{w_a}\left( {{\gamma _\parallel }\left( {{\kappa } + {\gamma _ \bot }} \right) + 2{\kappa }\left( {{\kappa } - {\gamma _ \bot }} \right) + 4w_a^2} \right) } \right) }}{\nonumber }\\&\times {{\hbar {w_a}\left( {\gamma _\parallel ^2 + 4w_a^2} \right) \left( {{{({\kappa } - {\gamma _ \bot })}^2} + 4w_a^2} \right) }}. \end{aligned}$$
(55)

To analyze higher order nonlinearities in the system, the nonlinear polarization term \(\mathbf{P} _3\) is needed. Therefore, taking into account the nonlinear polarization into the population inversion Eq. (48) yields

$$\begin{aligned} k\frac{{\partial \mathbf{E _1}}}{{\partial \tau }}= &\, - 2i{w_a}\frac{{\partial \mathbf{E _1}}}{{\partial \tau }} - 2i{w_a}c\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) \mathbf{E _1} \nonumber \\&- {\mu _0}{c^2}\left( {2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}} \right) , \end{aligned}$$
(56)
$$\begin{aligned} 2\frac{\partial }{{\partial \tau }}\frac{{\partial \mathbf{P _1}}}{{\partial t}}= &\, - {\gamma _ \bot }\frac{{\partial \mathbf{P _1}}}{{\partial \tau }} + \gamma _{_ \bot }^2\frac{{{\partial ^2}\mathbf{P _1}}}{{\partial {T^2}}} - g\left( {{{{{\tilde{D}}}}_0} + {D_2}} \right) \mathbf{E _1}, \end{aligned}$$
(57)
$$\begin{aligned} \frac{{\partial {D_2}}}{{\partial t}}= &\, - {\gamma _\parallel }{D_2} + \frac{2}{{\hbar {w_a}}}\left( {\mathbf{E _1}.\frac{{\partial {(\mathbf{P} _1+\mathbf{P} _3)}}}{{\partial t}}} \right) ,\end{aligned}$$
(58)

Where \(D_2\) is again obtained by solving Eq. (58), i.e.,

$$\begin{aligned} {D_2}= &\, {D_{20}} + {D_{22}}{e^{2i\left( {{w_a}t - {k_c}z} \right) }} + D_{22}^*{e^{ - 2i\left( {{w_a}t - {k_c}z} \right) }}\nonumber \\&+ {D_{24}}{e^{4i\left( {{w_a}t - {k_c}z} \right) }} + D_{24}^*{e^{ - 4i\left( {{w_a}t - {k_c}z} \right) }}, \end{aligned}$$
(59)

with

$$\begin{aligned} {D_{20}}= &\, \frac{4}{{\hbar {\mu _0}{c^2}{w_a}{\gamma _\parallel }}}\Bigg ( - k\mathbf{A} \mathbf{A ^*} + \frac{{kg\mathbf{A ^2}\mathbf{A ^{*2}}}}{{\hbar {w_a}{\gamma _ \bot }}}\Bigg (\frac{4}{{{\gamma _\parallel }}}+ \frac{1}{{\left( {{\gamma _\parallel } - 2i{w_a}} \right) }}+ \frac{1}{{\left( {{\gamma _\parallel } + 2i{w_a}} \right) }}\Bigg )\nonumber \\&+ \frac{{ig\mathbf{A ^2}\mathbf{A ^{*2}}}}{{\hbar {w_a}{\gamma _ \bot }}}\Bigg (\frac{1}{{\left( {{\gamma _\parallel } + 2i{w_a}} \right) }} - \frac{1}{{\left( {{\gamma _\parallel } - 2i{w_a}} \right) }}\Bigg )\Bigg ), \end{aligned}$$
(60)
$$\begin{aligned} {D_{22}}= &\, \frac{2}{{\hbar {\mu _0}{c^2}{w_a}\left( {{\gamma _\parallel } + 2i{w_a}} \right) }}( - \mathbf{A ^2}(k + i{w_a}) \nonumber \\&+ \frac{{2g\mathbf{A ^3}\mathbf{A ^*}}}{\hbar }\Bigg (\frac{k}{{{\gamma _ \bot }{w_a}}}\Bigg (\frac{1}{{\left( {{\gamma _\parallel } 2i{w_a}} \right) }} + \frac{2}{{{\gamma _\parallel }}}\Bigg )\nonumber \\&+ \frac{3}{{\left( {{\gamma _\parallel } + 2i{w_a}} \right) \left( {8{w_a} - 3i{\gamma _ \bot }} \right) }}\nonumber \\&+ \frac{i}{{\left( {{\gamma _\parallel } + 2i{w_a}} \right) }}\Bigg (\frac{1}{{{\gamma _ \bot }}} - \frac{{3k}}{{{w_a}\left( {8{w_a} - 3i{\gamma _ \bot }} \right) }}\Bigg )\Bigg )\Bigg ), \end{aligned}$$
(61)
$$\begin{aligned} {D_{24}}= &\, \frac{{12g\mathbf{A ^4}}}{{{\hbar ^2}{\mu _0}{c^2}{w_a}\left( {{\gamma _\parallel } + 4i{w_a}} \right) \left( {8{w_a} - 3i{\gamma _ \bot }} \right) }}\left( {1 - \frac{{ik}}{{{w_a}}}} \right) . \end{aligned}$$
(62)

Substituting Eq. (59) into Eq. (57), and after some algebra, we obtain the following (3+1)D vectorial cubic-quintic CGL equation

$$\begin{aligned} \begin{aligned} \frac{{\partial \mathbf{A} }}{{\partial \tau }}&= {z_1}{} \mathbf{A} + {z_2}\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) \mathbf{A} + {z_3}{\left( {\frac{\partial }{{\partial Z}} + \frac{i}{{2{k_c}}}\nabla _ \bot ^2} \right) ^2}{} \mathbf{A} + {z_4}\left( \mathbf{A \cdot \mathbf{A ^*}} \right) \mathbf{A} \\&\quad + {z_5}\left( \mathbf{A \cdot \mathbf{A} } \right) \mathbf{A ^*}+ {z_6}\left( {\mathbf{A ^2}\cdot \mathbf{A ^{*2}}} \right) \mathbf{A} + {z_7}\left( {\mathbf{A ^3}\cdot \mathbf{A ^*}} \right) \mathbf{A ^*}, \end{aligned} \end{aligned}$$
(63)

with

$$\begin{aligned} {z_1}= &\, \frac{{{\mu _0}{c^2}g{{{{\tilde{D}}}}_0}\left( {k - {\gamma _\bot } +2i{w_a}} \right) }}{{{{\left( {k - {\gamma _ \bot }} \right) }^2} + 4w_a^2}}, \end{aligned}$$
(64)
$$\begin{aligned} {z_2}= &\, \frac{{2c\left( {2w_a^2 + {\gamma _ \bot }\left( {{\gamma _ \bot } - k} \right) + i{w_a}\left( {k - 3{\gamma _ \bot }} \right) } \right) }}{{{{\left( {k - {\gamma _ \bot }} \right) }^2} + 4w_a^2}}, \end{aligned}$$
(65)
$$\begin{aligned} {z_3}= &\, \frac{{4{c^2}{\gamma _ \bot }\left( \begin{array}{l} \gamma _ \bot ^2(2\kappa - {\gamma _ \bot }) + \kappa \left( {\kappa {\gamma _ \bot } - 4w_a^2} \right) \\ - i{\gamma _ \bot }\left( {3\gamma _ \bot ^2 + 4w_a^2 - \kappa (2{\gamma _ \bot } - \kappa )} \right) \end{array} \right) }}{{{{(\kappa - {\gamma _ \bot })}^2} + w_a^2}}, \end{aligned}$$
(66)
$$\begin{aligned} {z_4}= &\, \frac{{4kg\left( { \left( {k - {\gamma _ \bot }} \right) - 2i{w_a}} \right) }}{{\hbar {w_a}{\gamma _\parallel }\left( {{{\left( {k - {\gamma _ \bot }} \right) }^2} + 4w_a^2} \right) }}, \end{aligned}$$
(67)
$$\begin{aligned} {z_5}= &\, \frac{{2g\left( \begin{array}{l} {\gamma _\parallel }(\kappa (\kappa - \gamma _ \bot ^2) + 2w_a^2) - 2w_a^2(\kappa + {\gamma _ \bot })\\ - i{w_a}\left( {{\gamma _\parallel }(\kappa + {\gamma _ \bot }) + \kappa (\kappa - {\gamma _ \bot }) + 42w_a^2} \right) \end{array} \right) }}{{\hbar {w_a}\left( {{{(\kappa - {\gamma _ \bot })}^2} + w_a^2} \right) \left( {\gamma _\parallel ^2 + 4w_a^2} \right) }}, \end{aligned}$$
(68)
$$\begin{aligned} {z_6}= &\, \frac{{8k{g^2}\left( {{\gamma _\parallel }\left( {k +2{\gamma _\parallel }} \right) + 10w_a^2} \right) \left( {k - {\gamma _ \bot } - 2i{w_a}} \right) }}{{{\hbar ^2}w_a^2{\gamma _ \bot }\gamma _\parallel ^2\left( {{{\left( {k - {\gamma _ \bot }} \right) }^2} + 4w_a^2} \right) \left( {\gamma _\parallel ^2 + 4w_a^2} \right) }}, \end{aligned}$$
(69)
$$\begin{aligned}&\begin{aligned} {z_{7r}}&= \frac{{4{g^2}\left( \begin{aligned}&({\gamma _\parallel }(k(3\gamma _\parallel ^2 + 4w_a^2) + 4w_a^2{\gamma _\parallel })(9\gamma _ \bot ^2 + 64w_a^2) + 3{\gamma _ \bot }{\gamma _\parallel }((8w_a^2 \\&+ 3k{\gamma _ \bot })(\gamma _{_\parallel }^2 - 4w_a^2) + 4{\gamma _\parallel }w_a^2( - 8k + 3{\gamma _ \bot })))(k - {\gamma _ \bot })\\&+ 2w_a^2(((\gamma _\parallel ^2 - 4w_a^2 - 4k{\gamma _\parallel }){\gamma _\parallel } - 4k(\gamma _\parallel ^2 + 4w_a^2))(9\gamma _ \bot ^2 + 64w_a^2) \\&+ 3{\gamma _\parallel }{\gamma _ \bot }(( - 8k + 3{\gamma _ \bot })(\gamma _\parallel ^2 - 4w_a^2) - 4(8w_a^2 + 3k{\gamma _ \bot }){\gamma _\parallel })) \end{aligned} \right) }}{{{\hbar ^2}w_a^2{\gamma _ \bot }{\gamma _\parallel }{{(\gamma _\parallel ^2 + 4w_a^2)}^2}(9\gamma _ \bot ^2 + 64w_a^2)({{(k - {\gamma _ \bot })}^2} + 4w_a^2)}}\end{aligned} \end{aligned}$$
(70)
$$\begin{aligned} {z_{7i}}= &\, \frac{{4{g^2}\left( \begin{aligned}&({w_a}(((\gamma _{_\parallel }^2 - 4(w_a^2 + k{\gamma _\parallel })) - 4k(\gamma _\parallel ^2 + 4w_a^2))(9\gamma _ \bot ^2 + 64w_a^2)\\&+ 3{\gamma _\parallel }{\gamma _ \bot }(( - 8k + 3{\gamma _ \bot })(\gamma _{_\parallel }^2 - 4w_a^2)- 4{\gamma _\parallel }(8w_a^2 + 3k{\gamma _ \bot })))(\mathrm{{k - }}{\gamma _ \bot } \\&\mathrm{{) - 2(}}{\gamma _\parallel }\mathrm{{(k(3}}\gamma _\parallel ^2 + 4w_a^2) + 4w_a^2{\gamma _\parallel })(9\gamma _{\bot }^2 + 64w_a^2) + 3{w_a}{\gamma _\parallel }{\gamma _ \bot }((8w_a^2 \\&+3k{\gamma _ \bot })(\gamma _\parallel ^2 - 4w_a^2) + 4w_a^2{\gamma _\parallel }(3{\gamma _ \bot } - 8k))) \end{aligned} \right) }}{{{\hbar ^2}w_a^2{\gamma _ \bot }{\gamma _\parallel }{{(\gamma _\parallel ^2 + 4w_a^2)}^2}(9\gamma _ \bot ^2 + 64w_a^2)({{(k - {\gamma _ \bot })}^2} + 4w_a^2)}} \end{aligned}$$
(71)

1.2 B Effective potential

The expression of the effective potential derived in Sec. 4 is as follows:

$$\begin{aligned}\begin{array}{l} \begin{aligned} &{}U = \Bigg (\frac{{32X_0^4}}{{81{X^2}}} + \frac{1}{{{X^2}}} - \frac{{28X_0^2}}{{81}} + \frac{{4X_0^2}}{{9{X^2}}} - \frac{{13}}{{36}} + \frac{3}{{128X_0^2}}\Bigg )\\ &{}\quad {A^8}\delta _i^2{e^{ - \frac{{16X_0^2}}{{{X^2}}}}} + \Bigg (\frac{{8X_0^4}}{{{X^2}}}\\ &{}\quad + \frac{1}{{4{X^2}}} + \Bigg (\frac{{17}}{{18{X^2}}} - \frac{{79}}{{126}}\Bigg )X_0^2 - \frac{{5{X^2}}}{4} - \frac{{53}}{{84}} - \frac{9}{{56X_0^2}}\Bigg )\\ &{} {A^6}{\delta _i}{\gamma _i}{e^{ - \frac{{14X_0^2}}{{3{X^2}}}}} \\ &{}\quad + (( - \frac{1}{8}(7{X^2} + \frac{{15}}{{8X_0^2}})\delta _i^2- \frac{1}{9}(1 + 8{X^2} + \frac{{16}}{9}X_0^2){\delta _i}\mu )\\ &{} {A^8} - (1 + 2X_0^2 \\ &{}\quad + 7{X^2}){A^6}\varepsilon {\delta _i} + (\frac{8}{9}(4C+ \frac{\beta }{{{X^2}}} - 4\beta {\delta _i}{C^2}{X^2})X_0^2{\delta _i} - \frac{{16}}{9}(1 \\ &{}\quad + 5\beta C{X^2}){\delta _i}NX_0^2 - \frac{{8\beta {\delta _r}C{X^2}}}{3} \\ &{}\quad +2\beta {\delta _i}{C^2}{X^2}({X^2} - 1) + 2{\delta _i}C \\ &{} \quad - \frac{4}{3}{\delta _r} + 2{\delta _i}C{X^2} + {\delta _i}\beta {N^2}{X^2} - \delta {\delta _i}{X^2} \\ &{}\quad + \frac{{\beta {\delta _i}}}{{2{X^2}}} - \frac{{11}}{6}\beta {\delta _i} - \frac{{{\delta _i}N}}{{{X_0}}} \\ &{}\quad - \frac{{3\beta {\delta _i}}}{{4X_0^2}}){A^4}){e^{ - \frac{{8X_0^2}}{{{X^2}}}}} \\ &{}\quad + ( - (1 + 2X_0^2 - \frac{{11}}{2}{X^2})\mu {\gamma _i}{A^6} - (1 +4{X^2} \\ &{}\quad +2X_0^2){A^4} + ( - {\gamma _r} - \frac{3}{2}{\gamma _i}\beta + 2{\gamma _i}C \\ &{}\quad + 4{\gamma _i}CX_0^2- 2{\gamma _i}N{X_0} + 2\beta {\gamma _i}{C^2}{X^4} \\ &{}\quad - \frac{{{\gamma _i}N}}{{{X_p}}} - \frac{{{\gamma _i}\beta }}{{2X_0^2}} + \frac{{\beta {\gamma _i}}}{{2{X^2}}} + \frac{{{\gamma _i}\beta X_0^2}}{{{X^2}}}){A^2}\\ &{}\quad - (\frac{{{\gamma _i}\delta }}{2} + 8\beta {\gamma _i}C{X_0}N+ 2\beta {\gamma _i}{C^2}\\ &{}\quad +\beta {\gamma _r}C + 4\beta {\gamma _i}{C^2}X_0^2 - \frac{{\beta {\gamma _i}N}}{2})){e^{ - \frac{{2X_0^2}}{{{X^2}}}}} + (\frac{{\gamma _i^2X_0^2}}{{2{X^2}}} \\ &{}\quad + \frac{{\gamma _i^2}}{{8{X^2}}} - \frac{{\gamma _i^2}}{4} \\ &{}\quad -\frac{3}{{32}}\gamma _i^2{X^2}- \frac{{\gamma _i^2}}{{16X_0^2}} - \frac{{\gamma _i^2X_0^2}}{4} \\ &{}\quad + \frac{{\gamma _i^2X_0^2}}{{2{X^2}}}){e^{ - \frac{{4X_0^2}}{{{X^2}}}}}- \frac{{2{\mu ^2}{X^2}{A^8}}}{9} - \frac{{5\mu \varepsilon {X^2}{A^6}}}{{12}}\\ &{}\quad +4{\beta ^2}{C^2}{X^2}(2{C^2}{X^4} + 3) - \frac{2}{{{X^2}}} + \frac{{{\beta ^2}}}{{2{X^2}}}\\ &{} \quad - 8\beta {C^3}{X^4} - 24\beta C\ln (X) \\ &{}\quad + (\frac{{{X^2}\varepsilon }}{4}(\beta {N^2} - \delta )\\ &{}\quad + \beta C{X^2}( - 1 + \varepsilon C{X^2}) + (1 + \beta \varepsilon )\ln (X)){A^2} \end{aligned} \end{array}\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djazet, A., Fewo, S.I., Tabi, C.B. et al. Dynamics of moving cavity solitons in two-level laser system from symmetric gaussian input: vectorial cubic-quintic complex Ginzburg–Landau equation. Appl. Phys. B 127, 151 (2021). https://doi.org/10.1007/s00340-021-07700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07700-y

Navigation