Skip to main content
Log in

Inductive laser on neon’s atomic transitions pumped by a pulsed inductive discharge

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

For the first time, lasing on electronic transitions of neutral neon atoms (540.1, 594.4, and 614.3 nm) pumped by a pulsed inductive cylindrical discharge was obtained. Pure neon and its mixtures with NF3 and SF6 were used as active media. The optical pulses’ duration was 15 ± 2 ns (FWHM) at a wavelength of 540.1 nm and did not exceed 5 ± 1 ns (FWHM) at a wavelength of 614.3 nm. The maximum laser radiation energy was obtained at a wavelength of 540.1 nm and reached 50 μJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.A. Shahno, Fizicheskie osnovy primenenija lazerov v meditsine, in: Obzor osnovnyh napravlenij primenenija lazerov v meditsine (ITMO University, Saint Petersburg 2012, in Russian). https://books.ifmo.ru/file/pdf/903.pdf. Accessed 18 Oct 2021

  2. O.N. Pomerantsev, N.N. Potekaev, Klinicheskaja dermatologija i venerologija, 6 (2013), in Russian. https://www.mediasphera.ru/issues/klinicheskaya-dermatologiya-i-venerologiya/2013/6/downloads/ru/031997-2849201361. Accessed 18 Oct 2021

  3. N. Bouzari, C.S. Davis, K. Nouri, Int J Dermatol 4, 5–6 (2007)

    Google Scholar 

  4. M.I. Lomaev, A.N. Panchenko, V.F. Tarasenko, Sov. J. Quantum Electron. 17 (1987), http://mi.mathnet.ru/eng/qe9054. Accessed 18 Oct 2021

  5. I.I. Murav’ev, E.V. Chernikova, A.M. Yancharina, Sov J Quantum Electron (1989). https://doi.org/10.1070/QE1989v019n02ABEH007733

    Article  Google Scholar 

  6. M.I. Lomaev, V.F. Tarasenko, Sov. J. Quantum. Electron. 18 (1988), http://mi.mathnet.ru/qe12468. Accessed 18 Oct 2021

  7. F.V. Bunkin, V.I. Derzhiev, G.A. Mesyats et al., Sov. J. Quantum. Electron.15 (1985), http://mi.mathnet.ru/qe6095. Accessed 18 Oct 2021

  8. V.I. Derzhiev, A.G. Zhidkov, A.V. Koval’ et al., Sov. J. Quantum. Electronics 18 (1988), http://mi.mathnet.ru/qe10365. Accessed 18 Oct 2021

  9. V.M. Orlovsky, V.S. Skakun, V.F. Tarasenko et al., Russ Phys J (2000). https://doi.org/10.1007/BF02508519

    Article  Google Scholar 

  10. A.Y. Aleksandrov, V.A. Dolgikh, O.M. Kerimov et al., Sov J Quantum Electron (1987). https://doi.org/10.1070/QE1987v017n03ABEH007665

    Article  Google Scholar 

  11. D.A. Zayarnyi, I.V. Holin, Quantum. Electron. 33(2003). http://mi.mathnet.ru/qe2439. Accessed 18 Oct 2021

  12. G.A. Hebner, G.N. Hays, Appl Phys Lett (1990). https://doi.org/10.1063/1.103926

    Article  Google Scholar 

  13. A.I. Konak, S.P. Mel’nikov, V.V. Porhaev et al., Quantum. Electron. 25 (1995). http://mi.mathnet.ru/qe327. Accessed 18 Oct 2021

  14. B. Horvath, A. Derzsi, J. Schulze et al., Plasma Sources Sci. Technol. 29, 055002 (2020). https://doi.org/10.1088/1361-6595/ab8176

    Article  ADS  Google Scholar 

  15. V.L. Sukhorukov, I.D. Petrov, M. Schafer et al., J Phys B 45, 092001 (2012). https://doi.org/10.1088/0953-4075/45/9/092001

    Article  ADS  Google Scholar 

  16. A.M. Razhev, D.S. Churkin, E.S. Kargapol’tsev, Laser Phys Lett (2019). https://doi.org/10.1088/1612-202X/ab09e7

    Article  Google Scholar 

  17. A.M. Razhev, D.S. Churkin, E.S. Kargapol’tsev et al., Atmos Ocean Opt 4, 5–6 (2020)

    Google Scholar 

  18. A.M. Razhev, D.S. Churkin, R.A. Tkachenko, Atmos Ocean Opt (2020). https://doi.org/10.15372/AOO20200302

    Article  Google Scholar 

  19. A.M. Razhev, D.S. Churkin, R.A. Tkachenko, Appl Phys B (2020). https://doi.org/10.1007/s00340-020-07459-8

    Article  Google Scholar 

  20. T.M. Gorbunova, V.I. Derzhiev, Y.P. Mikhailichenko et al., Sov J Quantum Electron (1990). https://doi.org/10.1070/qe1990v020n10abeh007440

    Article  Google Scholar 

  21. M.I. Lomaev, D.Y. Nagornyi, V.F. Tarasenko et al., Sov J Quantum Electron (1989). https://doi.org/10.1070/QE1989v019n10ABEH009234

    Article  Google Scholar 

  22. G.I. Babat, Electrodeless discharges and some related issues. Vestnik Electrompromishlennosti. in Russian 13, 1–12 (1942)

Download references

Acknowledgements

The reported study was funded by RFBR and Novosibirsk region according to the research project No 20-42-543005\20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Tkachenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razhev, A.M., Churkin, D.S. & Tkachenko, R.A. Inductive laser on neon’s atomic transitions pumped by a pulsed inductive discharge. Appl. Phys. B 127, 152 (2021). https://doi.org/10.1007/s00340-021-07698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07698-3

Navigation