Skip to main content

Advertisement

Log in

Tuning the optoelectronic properties of n-CdO:Fe/p-Si photodiodes fabricated by facile perfume atomizer technique for photo-detector applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, a facile spray-assisted perfume atomizer technique was used to prepare CdO and Fe-doped CdO (CdO:Fe) thin films with varying concentrations of Fe (1, 3, and 5 wt%). The deposited films were characterized using different analytical techniques to realize the structural, morphological, optical, electrical, and photosensing properties. From X-ray diffraction (XRD) results, the CdO and CdO:Fe thin films have a cubic structure and an increase in crystallite size was observed for the CdO:Fe(3%) sample. The optical studies of the doped samples reveal a high absorption in the observed wavelength range and a decrease in optical bandgap values. The CdO:Fe(3%) sample exhibits a minimum resistivity value (4.02 × 10–3 Ωcm), high carrier concentration (22.92 × 1019 cm−3), and high mobility (6.78 cmV−1 s−1). The current–voltage characteristics suggest that the CdO:Fe(3%) sample has a lower ideality factor of 4.2, high photocurrent value of 1.62 × 10–2 A. It also has better photosensing parameter values such as responsivity of 0.15AW−1, the external quantum efficiency of 2.92 × 108 Jones, and detectivity of 50%, which are due to the synergistic effect of increased crystallite size, high light absorption, optimum bandgap, and better electrical properties of the CdO:Fe(3%) sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Purcar, V. Rădiţoiu, A. Dumitru, C.A. Nicolae, A.N. Frone, M. Anastasescu, A. Rădiţoiu, M.F. Raduly, R.A. Gabor, S. Căprărescu, Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method. Appl. Surf. Sci. 487, 819–824 (2019). https://doi.org/10.1016/j.apsusc.2019.02.256

    Article  ADS  Google Scholar 

  2. J. Zhao, R. Deng, J. Qin, J. Song, D. Jiang, B. Yao, Y. Li, Photoresponse enhancement in SnO2-based ultraviolet photodetectors via coupling with surface plasmons of Ag particles. J. Alloys Compd. 748, 398–403 (2018). https://doi.org/10.1016/j.jallcom.2018.03.180

    Article  Google Scholar 

  3. T. Pauporté, Synthesis of ZnO Nanostructures for Solar Cells-A Focus on Dye-Sensitized and Perovskite Solar Cells, in: Futur. Semicond. Oxides Next-Generation Sol. Cells, Elsevier, pp. 3–43 (2018). https://doi.org/10.1016/B978-0-12-811165-9.00001-6.

  4. M.H. Morcali, C. Eyuboglu, S. Aktas, Synthesis of nanosized Cr2O3 from turkish chromite concentrates with sodium borohydride (NaHB4) as reducing agent. Int. J. Miner. Process. 157, 7–15 (2016). https://doi.org/10.1016/j.minpro.2016.08.018

    Article  Google Scholar 

  5. Y.S. Ocak, D. Batibay, S. Baturay, Optical and electrical properties of Ni-doped CdO thin films by ultrasonic spray pyrolysis. J. Mater. Sci. Mater. Electron. 29, 17425–17431 (2018). https://doi.org/10.1007/s10854-018-9841-2

    Article  Google Scholar 

  6. B. Sahin, F. Bayansal, H.M. Çakmak, S. Kahraman, H.A. Çetinkara, Effect of heat treatment on the properties of Cd(OH)2 and CdO films grown by chemical bath deposition. Philos. Mag. Lett. 93, 101–108 (2013). https://doi.org/10.1080/09500839.2012.746791

    Article  ADS  Google Scholar 

  7. D. Antosoly, S. Ilangovan, V.S. Nagarethinam, A.R. Balu, Modulation of microstructure and magnetic properties of Sr-doped CdO films. Surf. Eng. 34, 682–688 (2018). https://doi.org/10.1080/02670844.2017.1390905

    Article  Google Scholar 

  8. G. Turgut, M.S. Kurt, M. Ertuğrul, D. İskenderoglu, S. Duman, B. Gurbulak, Silicon-doping influence on the crystalline, surface and optical features of cadmium oxide films deposited by sol-gel spin route. Optik (Stuttg). 165, 310–318 (2018). https://doi.org/10.1016/j.ijleo.2018.03.138

    Article  ADS  Google Scholar 

  9. A. Eskandari, F. Jamali-Sheini, Sonochemical synthesis of Cu-doped CdO nanostructures and investigation of their physical properties. Mater. Sci. Semicond. Process. 74, 210–217 (2018). https://doi.org/10.1016/j.mssp.2017.08.028

    Article  Google Scholar 

  10. M. Anitha, N. Anitha, K. Saravanakumar, I. Kulandaisamy, L. Amalraj, Effect of Zn doping on structural, morphological, optical and electrical properties of nebulized spray-deposited CdO thin films. Appl. Phys. A Mater. Sci. Process. 124, 1–13 (2018). https://doi.org/10.1007/s00339-018-1993-7

    Article  ADS  Google Scholar 

  11. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, Luminescence and Raman scattering properties of Ag-doped ZnO films. J. Phys. D. Appl. Phys. 39, 4992–4996 (2006). https://doi.org/10.1088/0022-3727/39/23/014

    Article  ADS  Google Scholar 

  12. N. Wongcharoen, T. Gaewdang, T. Wongcharoen, Electrical properties of Al-doped CdO thin films prepared by thermal evaporation in vacuum, in: Energy Procedia, Elsevier, pp. 361–370 (2012). https://doi.org/10.1016/j.egypro.2012.02.044.

  13. K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R. Ramesh Babu, K. Ramamurthi, Influence of Mn doping on structural, optical and electrical properties of CdO thin films prepared by cost effective spray pyrolysis method. Mater. Sci. Semicond. Process. 26, 346–353 (2014). https://doi.org/10.1016/j.mssp.2014.05.005

    Article  Google Scholar 

  14. C. Aydın, O.A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Hazmi, I.S. Yahia, F. El-Tantawy, F. Yakuphanoglu, Controlling of crystal size and optical band gap of CdO nanopowder semiconductors by low and high Fe contents. J. Electroceramics. 29, 155–162 (2012). https://doi.org/10.1007/s10832-012-9748-x

    Article  Google Scholar 

  15. C. Bhukkal, R. Ahlawat, Cu2+–Mn2+-Co-doped CdO nanocrystallites: comprehensive research on phase, morphology and optoelectronic properties. Res. Chem. Intermed. 46, 4211–4232 (2020). https://doi.org/10.1007/s11164-020-04202-y

    Article  Google Scholar 

  16. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  17. Ş Karataş, F. Yakuphanoglu, Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. J. Alloys Compd. 537, 6–11 (2012). https://doi.org/10.1016/j.jallcom.2012.05.025

    Article  Google Scholar 

  18. K. Usharani, A.R. Balu, Structural, optical, and electrical properties of Zn-doped CdO thin films fabricated by a simplified spray pyrolysis technique. Acta Metall. Sin. 28, 64–71 (2015). https://doi.org/10.1007/s40195-014-0168-6

    Article  Google Scholar 

  19. A.J. Varkey, A.F. Fort, Transparent conducting cadmium oxide thin films prepared by a solution growth technique. Thin Solid Films 239, 211–213 (1994). https://doi.org/10.1016/0040-6090(94)90853-2

    Article  ADS  Google Scholar 

  20. M. Soylu, T. Yazici, CdO thin films based on the annealing temperature differences prepared by sol-gel method and their heterojunction devices. Mater. Res. Express. 4, 126307 (2017). https://doi.org/10.1088/2053-1591/aa9cf8

    Article  ADS  Google Scholar 

  21. B. Saha, R. Thapa, K.K. Chattopadhyay, Wide range tuning of electrical conductivity of RF sputtered CdO thin films through oxygen partial pressure variation. Sol. Energy Mater. Sol. Cells. 92, 1077–1080 (2008). https://doi.org/10.1016/j.solmat.2008.03.024

    Article  Google Scholar 

  22. H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu, Y. Wu, Fabrication of CdO nanotubes via simple thermal evaporation. Mater. Lett. 62, 3928–3930 (2008). https://doi.org/10.1016/j.matlet.2008.05.010

    Article  Google Scholar 

  23. M. Ravikumar, S. Valanarasu, R. Chandramohan, S.S.K. Jacob, A. Kathalingam, Effect of trisodium citrate concentration on the structural and photodiode performance of CdO thin films. J. Electron. Mater. 44, 2800–2806 (2015). https://doi.org/10.1007/s11664-015-3759-8

    Article  ADS  Google Scholar 

  24. K. Usharani, A.R. Balu, V.S. Nagarethinam, M. Suganya, Characteristic analysis on the physical properties of nanostructured Mg-doped CdO thin films-Doping concentration effect. Prog. Nat. Sci. Mater. Int. 25, 251–257 (2015). https://doi.org/10.1016/j.pnsc.2015.06.003

    Article  Google Scholar 

  25. A.A. Dakhel, M. El-Hilo, M. Bououdina, Cu-codoping for the enhancement of ferromagnetism of Fe-doped CdO nanopowders. J. Supercond. Nov. Magn. 27, 2089–2095 (2014). https://doi.org/10.1007/s10948-014-2553-9

    Article  Google Scholar 

  26. Y. Gülen, B. Sahin, F. Bayansal, H.A. Çetinkara, Solution-phase synthesis of un-doped and Pb doped CdO films. Superlattices Microstruct. 68, 48–55 (2014). https://doi.org/10.1016/j.spmi.2014.01.012

    Article  ADS  Google Scholar 

  27. G.K. Williamson, R.E. Smallman III., Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1, 34–46 (1956). https://doi.org/10.1080/14786435608238074

    Article  ADS  Google Scholar 

  28. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Effect of Pr3+doping on key properties of CdO thin films deposited by spray pyrolysis using perfume atomizer. J. Phys. Chem. Solids. 118, 211–220 (2018). https://doi.org/10.1016/j.jpcs.2018.03.009

    Article  ADS  Google Scholar 

  29. M. Anitha, L. Amalraj, N. Anitha, Influence of precursor concentration on physical properties of CdO thin films prepared by spray pyrolysis technique using nebulizer. Appl. Phys. A Mater. Sci. Process. 123, 1–15 (2017). https://doi.org/10.1007/s00339-017-1385-4

    Article  Google Scholar 

  30. B. Sahin, R. Aydin, SILAR derived CdO films: Effect of triethanolamine on the surface morphology and optical bandgap energy. Phys. B Condens. Matter. 541, 95–102 (2018). https://doi.org/10.1016/j.physb.2018.04.043

    Article  ADS  Google Scholar 

  31. E. Burstein, Anomalous optical absorption limit in InSb [4]. Phys. Rev. 93, 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  ADS  Google Scholar 

  32. K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, K. Ramamurthi, Chemical spray pyrolysis deposition of transparent and conducting Fe doped CdO thin films for ethanol sensor. Mater. Sci. Semicond. Process. 40, 879–884 (2015). https://doi.org/10.1016/j.mssp.2015.07.090

    Article  Google Scholar 

  33. A.A. Dakhel, Electrical and optical properties of iron-doped CdO. Thin Solid Films 518, 1712–1715 (2010). https://doi.org/10.1016/j.tsf.2009.11.026

    Article  ADS  Google Scholar 

  34. R.K. Gupta, F. Yakuphanoglu, F.M. Amanullah, Band gap engineering of nanostructure Cu doped CdO films. Phys. E Low-Dimensional Syst. Nanostructures. 43, 1666–1668 (2011). https://doi.org/10.1016/j.physe.2011.05.019

    Article  ADS  Google Scholar 

  35. N. Manjula, A.R. Balu, Double doping (Mn + Cl) effects on the structural, morphological, photoluminescence, optoelectronic properties and antibacterial activity of CdO thin films. Optik (Stuttg). 130, 464–472 (2017). https://doi.org/10.1016/j.ijleo.2016.10.074

    Article  ADS  Google Scholar 

  36. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 20, 561–572 (2010). https://doi.org/10.1002/adfm.200901884

    Article  Google Scholar 

  37. S. Mahamuni, K. Borgohain, B.S. Bendre, V.J. Leppert, S.H. Risbud, Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 85, 2861–2865 (1999). https://doi.org/10.1063/1.369049

    Article  ADS  Google Scholar 

  38. N. Manjula, M. Suganya, D. Prabha, S. Balamurugan, J. Srivind, V.S. Nagarethinam, A.R. Balu, Optoelectronic, magnetic and antibacterial properties of CdO thin films doubly doped with Mn (cationic) and F (anionic) ions. J. Mater. Sci. Mater. Electron. 28, 7615–7621 (2017). https://doi.org/10.1007/s10854-017-6454-0

    Article  Google Scholar 

  39. W. Dong, C. Zhu, Optical properties of surface-modified CdO nanoparticles. Opt. Mater. (Amst) 22, 227–233 (2003). https://doi.org/10.1016/S0925-3467(02)00269-0

    Article  ADS  Google Scholar 

  40. S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities, Pacific Sci. Rev. A Nat. Sci. Eng. 18, 228–232 (2016). https://doi.org/10.1016/j.psra.2016.10.003

    Article  Google Scholar 

  41. F. Yakuphanoglu, M. Caglar, Y. Caglar, S. Ilican, Electrical characterization of nanocluster n-CdO/p-Si heterojunction diode. J. Alloys Compd. 506, 188–193 (2010). https://doi.org/10.1016/j.jallcom.2010.06.174

    Article  Google Scholar 

  42. N. Raja, V.S. Nagarethinam, A.R. Balu, Structural, morphological and optoelectronic properties of CdO: Ag films–precursor solution aging effect. Surf. Eng. 36, 418–423 (2020). https://doi.org/10.1080/02670844.2019.1644937

    Article  Google Scholar 

  43. H. Çolak, O. Türkoĝlu, Synthesis, crystal structural and electrical conductivity properties of Fe-doped zinc oxide powders at high temperatures. J. Mater. Sci. Technol. 28, 268–274 (2012). https://doi.org/10.1016/S1005-0302(12)60052-8

    Article  Google Scholar 

  44. P. Sakthivel, S. Asaithambi, M. Karuppaiah, R. Yuvakkumar, Y. Hayakawa, G. Ravi, Improved optoelectronic properties of Gd doped cadmium oxide thin films through optimized film thickness for alternative TCO applications. J. Alloys Compd. 820, 153188 (2020). https://doi.org/10.1016/j.jallcom.2019.153188

    Article  Google Scholar 

  45. M.L. Dinesha, H.S. Jayanna, S. Ashoka, G.T. Chandrappa, Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method. J. Alloys Compd. 485, 538–541 (2009). https://doi.org/10.1016/j.jallcom.2009.06.022

    Article  Google Scholar 

  46. A.A. Dakhel, Interfacial modification in Si/CdO heterojunction by Ge doping for optoelectronic applications. Solid State Sci. 25, 33–38 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.08.001

    Article  ADS  Google Scholar 

  47. R.J. Deokate, S.V. Salunkhe, G.L. Agawane, B.S. Pawar, S.M. Pawar, K.Y. Rajpure, A.V. Moholkar, J.H. Kim, Structural, optical and electrical properties of chemically sprayed nanosized gallium doped CdO thin films. J. Alloys Compd. 496, 357–363 (2010). https://doi.org/10.1016/j.jallcom.2010.01.150

    Article  Google Scholar 

  48. B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum 85, 861–865 (2011). https://doi.org/10.1016/j.vacuum.2011.01.002

    Article  ADS  Google Scholar 

  49. Z. Ganjiani, F. Jamali-Sheini, R. Yousefi, Electrochemical synthesis and physical properties of Sn-doped CdO nanostructures. Superlattices Microstruct. 100, 988–996 (2016). https://doi.org/10.1016/j.spmi.2016.10.064

    Article  ADS  Google Scholar 

  50. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, M.S. Dahlem, M. Arivanandhan, Characterization of spray pyrolytically deposited high mobility praseodymium doped CdO thin films. Ceram. Int. 42, 12675–12685 (2016). https://doi.org/10.1016/j.ceramint.2016.05.017

    Article  Google Scholar 

  51. P. Velusamy, R.R. Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, Highly transparent conducting cerium incorporated CdO thin films deposited by a spray pyrolytic technique. RSC Adv. 5, 102741–102749 (2015). https://doi.org/10.1039/c5ra15262c

    Article  ADS  Google Scholar 

  52. A. Tataroǧlu, Ş Altindal, Characterization of current-voltage (I-V) and capacitance-voltage-frequency (C-V-f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 582–588 (2006). https://doi.org/10.1016/j.mee.2005.12.014

    Article  Google Scholar 

  53. M.A.M. Ahmed, W.E. Meyer, J.M. Nel, Effect of (Ce, Al) co-doped ZnO thin films on the Schottky diode properties fabricated using the sol-gel spin coating. Mater. Sci. Semicond. Process. 103, 104612 (2019). https://doi.org/10.1016/j.mssp.2019.104612

    Article  Google Scholar 

  54. S. Ruzgar, S.A. Pehlivanoglu, The effect of Fe dopant on structural, optical properties of TiO2 thin films and electrical performance of TiO2 based photodiode. Superlattices Microstruct. 145, 106636 (2020). https://doi.org/10.1016/j.spmi.2020.106636

    Article  Google Scholar 

  55. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. Alfaify, A. Kathalingam, Effect of Nd doping on structural and opto-electronic properties of CdO thin films fabricated by a perfume atomizer spray method. Bull. Mater. Sci. 42, 1–10 (2019). https://doi.org/10.1007/s12034-018-1688-x

    Article  Google Scholar 

  56. M. Shkir, I.M.M. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, S. AlFaify, A facile spray pyrolysis fabrication of Sm:CdS thin films for high-performance photodetector applications. Sensors Actuators, A Phys. 306, 111952 (2020). https://doi.org/10.1016/j.sna.2020.111952

    Article  Google Scholar 

  57. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, S. AlFaify, A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sensors Actuators, A Phys. 301, 111749 (2020). https://doi.org/10.1016/j.sna.2019.111749

    Article  Google Scholar 

  58. R.A. Ismail, A.-M.E. Al-Samarai, S.J. Mohmed, H.H. Ahmed, Characteristics of nanostructured CdO/Si heterojunction photodetector synthesized by CBD. Solid. State. Electron. 82, 115–121 (2013). https://doi.org/10.1016/j.sse.2013.02.035

    Article  ADS  Google Scholar 

  59. A.A. Dakhel, Influence of Be doping on the characteristics of CdO/p-Si heterojunction for optoresponse applications. Bull. Mater. Sci. 37, 1509–1514 (2014). https://doi.org/10.1007/s12034-014-0104-4

    Article  Google Scholar 

  60. O.A. Hammadi, Characteristics of heat-annealed silicon homojunction infrared photodetector fabricated by plasma-assisted technique. Photonic Sensors. 6, 345–350 (2016). https://doi.org/10.1007/s13320-016-0338-4

    Article  ADS  Google Scholar 

  61. R. Suresh, V. Ponnuswamy, C. Sankar, M. Manickam, R. Mariappan, Influence of Co concentration on the structural, optical, morphological and photo-diode properties of cerium oxide thin films. Ceram. Int. 42, 12715–12725 (2016). https://doi.org/10.1016/j.ceramint.2016.05.026

    Article  Google Scholar 

  62. P. Hazra, S.K. Singh, S. Jit, Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer. J. Semicond. Technol. Sci. 14, 117–123 (2014). https://doi.org/10.5573/JSTS.2014.14.1.117

    Article  Google Scholar 

  63. M. Ravikumar, V. Ganesh, M. Shkir, R. Chandramohan, K.D. Arun Kumar, S. Valanarasu, A. Kathalingam, S. AlFaify, Fabrication of Eu doped CdO [Al/Eu-nCdO/p-Si/Al] photodiodes by perfume atomizer based spray technique for opto-electronic applications. J. Mol. Struct. 1160, 311–318 (2018). https://doi.org/10.1016/j.molstruc.2018.01.095

    Article  ADS  Google Scholar 

  64. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Effect of Gd3+ doping on key structural, morphological, optical, and electrical properties of CdO thin films fabricated by spray pyrolysis using perfume atomizer. J. Sol-Gel Sci. Technol. 85, 31–40 (2018). https://doi.org/10.1007/s10971-017-4528-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors Tansir Ahamad and Saad M Alshehri thank to Researchers Supporting Project number (RSP-2020/29), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chidhambaram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajini, M., Vinoth, S., Hariprasad, K. et al. Tuning the optoelectronic properties of n-CdO:Fe/p-Si photodiodes fabricated by facile perfume atomizer technique for photo-detector applications. Appl. Phys. B 127, 109 (2021). https://doi.org/10.1007/s00340-021-07658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07658-x

Navigation