Skip to main content
Log in

Flexible control of laser transverse modes using a Fox-Smith mirror

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The Fox-Smith mirror (FSM) has long been used in a three-mirror laser cavity arrangement for forcing the laser oscillation on a single-longitudinal mode. However, its transverse properties are very little studied, and we report three interesting transverse features. First, the FSM gives the possibility to change the order p of the oscillating radial Laguerre–Gaussian LGp0 mode by adjusting the microscopic position of one of its mirrors. These results help for understanding non-interpreted experimental observations of interferometric control of the oscillating transverse mode reported by Smith in 1965. Second, we have shown that otherwise values of FSM parameters allow an equal FSM reflectivity of LG00 and LG01 (doughnut) modes. This would in effect give, to a laser using a FSM as rear mirror, a simultaneous oscillation of these two transverse modes giving rise to a shape-invariant flat-top laser beam. The latter having the interesting property to keep its uniform transverse intensity profile as it propagates inside and outside the laser cavity. Third, we have shown that the beam emerging from the FSM output through its beam splitter can be an Optical Bottle Beam by an adequate choice of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Li, Diffraction loss and selection of modes in maser resonator with circular mirrors. Bell. Syst. Tech. J. 44, 917–932 (1965)

    Article  Google Scholar 

  2. S. Ngcobo, K. Aït-Ameur, N. Passilly, A. Hasnaoui, A. Forbes, Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid state laser resonator. Appl. Opt. 52, 2090–2101 (2013)

    Article  ADS  Google Scholar 

  3. A.A. Ishaaya, N. Davidson, G. Machavariani, E. Hasman, A.A. Friesem, Efficient selection of high-order Laguerre-Gaussian modes in a Q-switched Nd:YAG Laser. IEEE J. Quant. Electron. 39, 74–82 (2003)

    Article  ADS  Google Scholar 

  4. Y. Senatsky, J.-F. Bisson, J. Li, A. Shirakawa, M. Thirugnanasambandam, K.-I. Ueda, Laguerre-Gaussian Modes Selection in diode-pumped solid-state lasers. Opt. Rev. 19, 201–221 (2012)

    Article  Google Scholar 

  5. P.W. Smith, Single-frequency lasers in Lasers: a Series of Advances, Vol. 4, ed. by A.K. Levine, A.J. DeMaria (Dekker, New York), Chap. 2 (1976)

  6. P.W. Smith, Mode selection in lasers. Proc. IEEE 60, 422–440 (1972)

    Article  Google Scholar 

  7. L. Grossard, A. Desfarges-Berthelemot, B. Colombeau, V. Couderc, C. Froehly, Dual frequency tunable CW Nd:YAG laser. Opt. Commun. 188, 353–357 (2001)

    Article  ADS  Google Scholar 

  8. E. Nichelatti, G. Salvetti, Transverse modes in laser cavities terminating in reflective multipass interferometers. Appl. Opt. 34, 2655–2658 (1995)

    Article  ADS  Google Scholar 

  9. Y. Wang, Y. Qu, W. Zhao, D. Ren, X. Hu, Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon. Appl. Phys. B 92, 237–241 (2008)

    Article  ADS  Google Scholar 

  10. X. Huang, L. Huang, M. Gong, Q-switched operation with Fox-Smith-Michelson laser cavity. Laser Phys. Lett. 5, 189–192 (2008)

    Article  ADS  Google Scholar 

  11. S. Vlasov, E. Koposova, Theory of coupled open resonators. Phys. Wave Phenomena 18, 7–13 (2010)

    Article  ADS  Google Scholar 

  12. P.W. Smith, Stabilized single-frequency output from a long laser cavity. IEEE J. Quant. Electron. QE-1, 343–348 (1965)

    Article  ADS  Google Scholar 

  13. M. Tobar, T. Suzuki, K. Kuroda, Detecting free-mass common-mode motion induced by incident gravitational waves. Phys. Rev. D 59, 102002 (1999)

    Article  ADS  Google Scholar 

  14. A. Agnesi, V. Degiorgio, Beam splitter phase shifts: wave optics approach. Opt. Las. Tech. 95, 72–73 (2017)

    Article  ADS  Google Scholar 

  15. M. Born, E. Wolf, Principle of optics sixth (corrected) Ed Pergamon Press (Oxford-New York-Seoul-Tokyo) (1980)

  16. H. Abu-Safia, R. Al-Tahtamouni, I. Abu-Aljarayesh, N. Yusuf, Transmission of a Gaussian beam through a Fabry-Pérot interferometer. Appl. Opt. 33, 3805–3811 (1994)

    Article  ADS  Google Scholar 

  17. K. Aït-Ameur, Reflection and transmission of the first two Laguerre-Gauss modes incident on a Fabry-Perot interferometer. J. Mod. Opt. 43, 99–104 (1996)

    ADS  Google Scholar 

  18. K. Aït-Ameur, Transverse properties of a Michelson mirror. Appl. Opt. 36, 1860–1866 (1997)

    Article  ADS  Google Scholar 

  19. D. Naidoo, K. Aït-Ameur, I. Litvin, M. Fromager, A. Forbes, Observing mode propagation inside a laser cavity. N. J. Phys. 14, 053021 (2012)

    Article  Google Scholar 

  20. J.W. Kim, W.A. Clarkson, Selective generation of Laguerre-Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Opt. Commun. 296, 109–112 (2013)

    Article  ADS  Google Scholar 

  21. D.J. Kim, J.W. Kim, Dual-cavity Nd:YAG laser with Laguerre-Gaussian (LG0n) mode output. Opt. Commun. 383, 26–30 (2017)

    Article  ADS  Google Scholar 

  22. E. Cagniot, M. Fromager, T. Godin, N. Passilly, K. Aït-Ameur, Transverse super-resolution technique involving rectified Laguerre Gaussian LGp0 beam. J. Opt. Soc. Am. A 28, 1709–1715 (2011)

    Article  ADS  Google Scholar 

  23. S. Haddadi, O. Bouzid, M. Fromager, A. Hasnaoui, A. Harfouche, E. Cagniot, A. Forbes, K. Aït-Ameur, Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes. J. Opt. 20, 045602 (2018)

    Article  ADS  Google Scholar 

  24. A. Bencheikh, M. Fromager, K. Ait-Ameur, Extended focus depth for Gaussian beam using binary phase diffractive optical elements. Appl. Opt. 57, 1899–1903 (2018)

    Article  ADS  Google Scholar 

  25. A. Ashkin, Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729–732 (1978)

    Article  ADS  Google Scholar 

  26. J. Chaloupka, D. Meyerhofer, Characterization of a tunable, single-beam ponderative-optical trap. J. Opt. Soc. Am. B 17, 713–722 (2000)

    Article  ADS  Google Scholar 

  27. R. Bourouis, K. Aït-Ameur, H. Ladjouze, Optimization of the Gaussian beam flattening using a phase-plate. J. Mod. Opt. 44, 1417–1427 (1997)

    Article  ADS  Google Scholar 

  28. O. Magnin, P. Meyrueis, Diffractive beam shaper for blood cells optical characterization. Opt. Commun. 217, 1–6 (2003)

    Article  ADS  Google Scholar 

  29. R. El-Agmy, H. Bulte, A. Greenaway, D. Reid, Adaptive beam profile control using a simulated annealing algorithm. Opt. Express 13, 6085–6091 (2005)

    Article  ADS  Google Scholar 

  30. S. Avino, E. Calloni, L. Milano, L. DiFiore, R. De. Rosa, A. Tierno, Generation of non-Gaussian flat laser beams. Phys. Lett. A 355, 258–261 (2006)

    Article  ADS  Google Scholar 

  31. A. Harfouche, B. Boubaha, M. Fromager, K. Aït-Ameur, Comparison between interferometric and diffractive laser beam shaping. J. Opt. 16, 125712 (2014)

    Article  ADS  Google Scholar 

  32. I. Litvin, A. Forbes, Intra-cavity flat-top beam generation. Opt. Express 17, 15891–15903 (2009)

    Article  ADS  Google Scholar 

  33. S. Tao, X. Yuan, Mode shaping at a given distance outside a resonator with diffractive optical elements. J. Opt. A: Pure Appl. Opt. 5, 511–514 (2003)

    Article  ADS  Google Scholar 

  34. S. Scoles, H. Spoor, K. Aït-Ameur, Q. Zhan, A. Forbes, General design principle for structured light lasers. Opt. Express 28, 35006 (2020)

    Article  ADS  Google Scholar 

  35. S. Ngcobo, K. Aït-Ameur, I. Litvin, A. Hasnaoui, A. Forbes, Tuneable Gaussian to flat-top resonator by amplitude beam shaping. Opt. Express 21, 21113–21118 (2013)

    Article  ADS  Google Scholar 

  36. O. Bouzid, A. Hasnaoui, K. Aït-Ameur, Simple intra-cavity beam shaping for generating a shape-invariant flat-top laser beam. Optik 201, 163494 (2020)

    Article  ADS  Google Scholar 

  37. D. Naidoo, A. Harfouche, M. Fromager, K. Aït-Ameur, A. Forbes, Emission of a propagation invariant flat-top beam from a microchip laser. J. Lumin. 170, 750–754 (2016)

    Article  Google Scholar 

  38. B. Boubaha, D. Naidoo, T. Godin, M. Fromager, A. Forbes, K. Aït-Ameur, Spatial properties of coaxial superposition of two coherent Gaussian beams. Appl. Opt. 52, 5766–5772 (2013)

    Article  ADS  Google Scholar 

  39. H. Rubinsztein-Dunlop, T.A. Nieminen, M.E.J. Friese, N.R. Heckenberg, Optical trapping of absorbing particles. Adv. Quant. Chem. 30, 469–492 (1998)

    Article  Google Scholar 

  40. K. Dholakia, P. Reece, M. Gu, Optical micromanipulation. Chem. Soc. Rev. 37, 42–55 (2008)

    Article  Google Scholar 

  41. P. Xu, X. He, J. Wang, M. Zhan, Trapping a single atom in a blue detuned optical bottle beam trap. Opt. Lett. 35, 2164–2166 (2010)

    Article  ADS  Google Scholar 

  42. O. Bouzid, S. Haddadi, M. Fromager, E. Cagniot, K. Ferria, A. Forbes, K. Aït-Ameur, Focusing anomalies with binary diffractive optical elements. Appl. Opt. 56, 9735–9741 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aït-Ameur.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Reflectivity and transmission of the Fox-Smith mirror for plane waves

Appendix: Reflectivity and transmission of the Fox-Smith mirror for plane waves

We will present in this Appendix an elegant method for calculating the reflectivity \(R_{{{\text{FS}}}}\) and the transmission \(T_{{{\text{FS}}}}\) of the Fox-Smith mirror which can be called as round-trip method. The latter does not need to sum up all the different reflected waves so forming a geometric series such as in Fabry–Pérot interferometer calculations [13, 15]. The Fox-Smith mirror shown in Figs.

Fig. 12
figure 12

Fox-Smith mirror showing the incident field \(E^{{\text{I}}}\), the reflected field \(E^{{\text{R}}}\), the internal field E(t) before and E(t + Δt) after a round-trip between mirrors M1 and M2. with \(\Delta t = 2(d_{1} + d_{2} )/c\)

12 and

Fig. 13
figure 13

Fox-Smith mirror showing the incident field \(E^{{\text{I}}}\), the transmitted field \(E^{{\text{T}}}\), the internal field E(t) given by Eq. (14)

13 has one input port (field \(E^{{\text{I}}}\)) and two output ports (fields \(E^{{\text{R}}}\) and \(E^{{\text{T}}}\)).

Let us consider a plane wave characterised by the electric field \(E^{{\text{I}}}\) incident on the Fox-Smith mirror, and let \(E^{{\text{R}}}\) the electrical field associated with the reflected waves (Fig. 12).

The beam splitter (BS) split the input plane wave into a proportion (in intensity) K in the reflection and (1−K) in its transmission, respectively. Consequently, the reflectance r and the transmittance \(\tau\) (ratio of amplitudes) of the beam splitter are given by \(r = \sqrt K\) and \(\tau = \sqrt {1 - K}\). Taking into account the phase shift (Fig. 2) introduced by the beam splitter we can write that the field E(t + Δt) after a round-trip inside the FS mirror as follows:

$$ E(t + \Delta t) = \left( {e^{i\pi /2} } \right)^{2} E(t)r^{2} e^{ - i\varphi } + \tau E^{I} , $$
(13)

where \(\varphi = 2k(d_{1} + d_{2} )\) and \(\Delta t = 2(d_{1} + d_{2} )/c\).

Equation (13) involves the dynamic of the electrical field over a round-trip inside the Fox-Smith mirror. The steady-state is defined by \(E(t + \Delta t) = E(t)\), and allows to express the field E(t) as follows:

$$ E = \frac{{\tau E^{{\text{I}}} }}{{1 + r^{2} e^{ - i\varphi } }}. $$
(14)

1.1 Reflectivity of the Fox-Smith mirror

The reflected field \(E^{{\text{R}}}\) corresponds to the field E having made a round-trip between the beam splitter and mirror M1, transmitted through BS, namely:

$$ E^{{\text{R}}} = \tau Ee^{{ - i2kd_{1} }} . $$
(15)

By combining Eqs. 14 and 15 we obtain the reflectance \(r_{{{\text{FS}}}}\) of the Fox-Smith mirror:

$$ r_{{{\text{FS}}}} = \frac{{E^{{\text{R}}} }}{{E^{{\text{I}}} }} = \frac{{(1 - K)e^{{ - i2kd_{1} }} }}{{1 + Ke^{ - i\varphi } }}. $$
(16)

Finally, the reflectivity \(R_{{{\text{FS}}}} = r_{{{\text{FS}}}} \times r_{{{\text{FS}}}}^{*}\) of the Fox-Smith mirror enlighten by plane waves is written as follows

$$ R_{{{\text{FS}}}} = \frac{{(1 - K)^{2} }}{{1 + K^{2} + 2K\cos (\varphi )}} = \frac{{(1 - K)^{2} }}{{(1 - K)^{2} + 2K[1 + \cos (\varphi )]}} $$

Finally by setting \(F = 4K/(1 - K)^{2}\) we obtain

$$ R_{{{\text{FS}}}} { = }\frac{1}{{1 + F\cos^{2} \left( {\frac{\varphi }{2}} \right)}} $$
(17)

1.2 Transmission of the Fox-Smith mirror

Figure 13 shows the different quantity for calculating the transmitted field \(E^{T}\) for reference purpose. The field \(E_{1}\) shown in Fig. 13 corresponds to the field E having travelled the distance \((2d_{1} + 2d_{2} )\) and undergoing a reflection on the beam splitter.

As a consequence, one can write:

$$ E_{1} = Ee^{{ - i2kd_{1} }} re^{i\pi /2} e^{{ - i2kd_{2} }} = irEe^{ - i\varphi } $$
(18)

Then the transmitted field \(E^{{\text{T}}}\) can be expressed as follows:

$$ E^{{\text{T}}} = re^{i\pi /2} E^{{\text{I}}} + \tau E_{1} = iE^{{\text{I}}} \left[ {r + \frac{{\tau^{2} re^{ - i\varphi } }}{{1 + r^{2} e^{ - i\varphi } }}} \right]. $$
(19)

Finally from the transmittance \(t_{{{\text{FS}}}} = E^{{\text{T}}} /E^{{\text{I}}}\), we express the transmission \(T_{{{\text{FS}}}} = t_{{{\text{FS}}}} \times t_{{{\text{FS}}}}^{*}\) (ratio of intensities):

$$ T_{{{\text{FS}}}} = (i)\left[ {r + \frac{{\tau^{2} re^{ - i\varphi } }}{{1 + r^{2} e^{ - i\varphi } }}} \right] \times ( - i)\left[ {r + \frac{{\tau^{2} re^{ + i\varphi } }}{{1 + r^{2} e^{ + i\varphi } }}} \right], $$
$$ T_{{{\text{FS}}}} = r^{2} \left[ {\frac{{1 + (r^{2} + \tau^{2} )e^{ - i\varphi } }}{{1 + r^{2} e^{ - i\varphi } }}} \right] \times \left[ {\frac{{1 + (r^{2} + \tau^{2} )e^{ + i\varphi } }}{{1 + r^{2} e^{ + i\varphi } }}} \right]. $$

Since \(\left( {r^{2} + \tau^{2} } \right) = 1\), then we obtain:

$$ T_{{{\text{FS}}}} = \frac{{2r^{2} [1 + \cos (\varphi )]}}{{1 + r^{4} + 2r^{2} \cos (\varphi )]}}. $$
(20)

By adding \(\left( {2r^{2} - 2r^{2} } \right)\) to the denominator of Eq. (20), and taking into account the definition of parameter F, we finally obtain:

$$ T_{{{\text{FS}}}} = \frac{{F\cos^{2} (\varphi /2)}}{{1 + F\cos^{2} (\varphi /2)}}. $$
(21)

Note that we find obviously \(\left( {R_{{{\text{FS}}}} + T_{{{\text{FS}}}} } \right) = 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habchi, A., Harfouche, A. & Aït-Ameur, K. Flexible control of laser transverse modes using a Fox-Smith mirror . Appl. Phys. B 127, 97 (2021). https://doi.org/10.1007/s00340-021-07643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07643-4

Navigation