Skip to main content
Log in

Negative resonant modes in a hyperbolic metamaterial slot cavity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We show that negative resonant modes with an inverse relationship between the wavelength and the cavity length can be excited in a hyperbolic metamaterial slot cavity (HMMSC) in addition to positive resonant modes. The observed negative resonant modes in an HMMSC are in sharp contrast to that observed in a metal slot cavity. We analyze the dynamics of the excited negative resonant modes in the visible spectrum regime as HMMSC parameters vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.T. Miyazaki, Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006)

    Article  ADS  Google Scholar 

  2. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Opt. Lett. 29, 1209 (2004)

    Article  ADS  Google Scholar 

  3. Y. Kurokawa, H.T. Miyazaki, Phys. Rev. B 75, 035411 (2007)

    Article  ADS  Google Scholar 

  4. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photonics 7, 948 (2013)

    Article  ADS  Google Scholar 

  5. P.A. Belov, Microw. Opt. Technol. Lett. 37, 259 (2003)

    Article  Google Scholar 

  6. Z. Huang, E. Narimanov, Opt. Express 21, 15020 (2013)

    Article  ADS  Google Scholar 

  7. E. Travkin, T. Kiel, S. Sadofev, S. Kalusniak, K. Busch, O. Benson, Opt. Lett. 45, 3665 (2020)

    Article  ADS  Google Scholar 

  8. Y. He, S. He, X. Yang, Opt. Lett. 37, 2907 (2012)

    Article  ADS  Google Scholar 

  9. E.D. Palik, Handbook of optical constants of solids (Academic Press, 1998)

    Google Scholar 

  10. 3D/2D Maxwell's solver for nanophotonic devices. https://www.lumerical.com/products/fdtd/

  11. A. Davoyan, S.I. Bozhevolnyi, Yu.S. Kivshar, I.V. Shadrivov, J. Nanophotonics 4, 043509 (2010)

    Article  ADS  Google Scholar 

  12. E. Feigenbaum, N. Kaminski, M. Orenstein, Opt. Express 17, 18934 (2009)

    Article  ADS  Google Scholar 

  13. T. Søndergaard, S.I. Bozhevolnyi, Phys. Status Solidi B 245, 9 (2008)

    Article  ADS  Google Scholar 

  14. D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, A.G. Borisov, Nano Letters 12, 1333 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Nicholas Kuhta and Alan Wang for the fruitful discussion on hyperbolic metamaterial and to Thomas Søndergaard for the discussion on transfer matrix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anisuzzaman Talukder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We derive the dispersion relation by calculating the transfer matrix for each of the interfaces of the layered HMMs. Transfer matrix for a dielectric–HMM interface is given by:

$$\begin{aligned} \begin{array}{l} {\mathrm {M} _{\mathrm{H},\mathrm{d}}} = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {{\mathrm{M} _{11} }} & {} {{\mathrm{M} _{12} }}\\ {{\mathrm{M} _{21} }} & {} {{\mathrm{M} _{22}}} \end{array}} \right] ,\\ \\ {\mathrm {M} _{11}} = \frac{{{k} _{x}^{2} }}{{{k}_{0}^{2}}} + \frac{{{\varepsilon} _{y} {k} _{y}^{2} }}{{{\varepsilon} _{x} {k} _{0}^{2} }} - i\frac{{{\varepsilon} _{y} {k} _{y} }}{{{\varepsilon} _{x} {\kappa} _{d} }}, {\mathrm{M} _{11} = \mathrm{M} _{22}} ,\\ {\mathrm{M} _{12}} = \frac{{{k} _{x}^{2} }}{{{k}_{0}^{2}}} + \frac{{{\varepsilon} _{y} {k} _{y}^{2} }}{{{\varepsilon} _{x} {k} _{0}^{2} }} + i\frac{{{\varepsilon} _{y} {k} _{y} }}{{{\varepsilon} _{x} {\kappa} _{d} }}, {\mathrm{M} _{12} = \mathrm{M} _{21}} , \end{array} \end{aligned}$$
(3)

and for HMM–dielectric interface is given by

$$\begin{aligned} \begin{array}{l} { \mathrm{N} _{\mathrm{d},\mathrm{H}}} = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {{ \mathrm{N} _{11} }} & {}{{ \mathrm{N} _{12} }}\\ {{ \mathrm{N} _{21} }} & {}{{ \mathrm{N} _{22} }} \end{array}} \right] ,\\ \\ { \mathrm {N} _{11}} = {\left( {\frac{{{k} _{x}^{2} }}{{{k}_{0}^{2}}} + \frac{{{\varepsilon} _{y} {k} _{y}^{2} }}{{{\varepsilon} _{x} {k} _{0}^{2} }}} \right) } ^{ - 1} + {i}\frac{{{\varepsilon} _{x} {\kappa} _{d} }}{{{\varepsilon} _{y} {k} _{y} }}, { \mathrm{N} _{11} = \mathrm{N} _{22} },\\ { \mathrm{N} _{12}} = {\left( {\frac{{{k} _{x}^{2} }}{{{k}_{0}^{2}}} + \frac{{{\varepsilon} _{y} {k} _{y}^{2} }}{{{\varepsilon} _{x} {k} _{0}^{2} }}} \right) } ^{ - 1} - {i}\frac{{{\varepsilon} _{x} {\kappa} _{d} }}{{{\varepsilon} _{y} {k} _{y} }}, { \mathrm{N} _{12} = \mathrm{N} _{21} }. \end{array} \end{aligned}$$
(4)

In Eqs. (3) and (4), \({k}_{y}\) is the y-component of wavevector inside HMM and \({\kappa} _{d}\) is the wavevector inside dielectric host, which are related by equations

$$\begin{aligned} \begin{array}{l} {\kappa} _{d} = \sqrt{{k} _{x}^{2} - {\varepsilon }_{dh} {k} _{0}^{2} } ,\\ \frac{{{k} _{x}^{2} }}{{{\varepsilon} _{y} }} + \frac{{{k} _{y}^{2} }}{{{\varepsilon} _{x} }} = {k} _{0}^{2} , \end{array} \end{aligned}$$
(5)

where \({\varepsilon }_{dh}\) is the dielectric constant of host matrix. Transfer matrices for propagation through an HMM and dielectric of lengths t and g, respectively, become

$$\begin{aligned} \begin{array}{l} {\mathrm {D} _\mathrm {H}} = \left[ {\begin{array}{*{20}{c}} {{e} ^{ - i{k} _{y} t} } & {}0\\ 0 & {}{{e} ^{i{k} _{y} t} } \end{array}} \right] ,~~~ {\mathrm {D} _\mathrm {d}} = \left[ {\begin{array}{*{20}{c}} {{e} ^{{\kappa} _{d} g} } & {}0\\ 0 & {}{{e} ^{ { - \kappa } _{d} g} } \end{array}} \right] . \end{array} \end{aligned}$$
(6)

Thus the overall transfer matrix for the HMM slot cavity shown in Fig. 1a is

$$\begin{aligned} \begin{array}{l} \mathrm {S }= \left[ {\begin{array}{*{20}{c}} {{\mathrm{S} _{11}} } & {}{{\mathrm{S} _{12} }}\\ {{\mathrm{S} _{21}} } & {}{{\mathrm{S} _{22} }} \end{array}} \right] ,\\ \quad = {\mathrm{N} _{\mathrm{d},\mathrm{H}} \mathrm{D} _\mathrm{H} \mathrm{M} _{\mathrm{H},\mathrm{d}} \mathrm{D} _\mathrm{d} \mathrm{N} _{\mathrm{d},\mathrm{H}} \mathrm{D} _\mathrm{H} \mathrm{M} _{\mathrm{H},\mathrm{d}}}. \end{array} \end{aligned}$$
(7)

The quantities M, N, and D are found from Eqs. (3), (4), and (6), respectively. Now, applying the boundary condition [13]

$$\begin{aligned} {\mathrm {S}_{11} = 0}, \end{aligned}$$
(8)

and solving for \({k}_{x}\) and \({k}_{y}\), the mode index is determined for particular set of parameter values, i.e., g, \({\varepsilon} _{x}\), \({\varepsilon} _{y}\), and \({\varepsilon} _{dh}\) at a desired wavelength.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M., Hasan, D., Islam, M.S. et al. Negative resonant modes in a hyperbolic metamaterial slot cavity. Appl. Phys. B 127, 89 (2021). https://doi.org/10.1007/s00340-021-07631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07631-8

Navigation