Skip to main content
Log in

Determination of calorific value in coal by LIBS coupled with acoustic normalization

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The low reproducibility is the most critical obstacle to the wide commercial application of laser-induced breakdown spectroscopy (LIBS). In this work, to improve the sample-to-sample reproducibility of LIBS real-time analysis of coal calorific value, we applied the acoustic signal generated by the laser ablation as the reference signal for normalization. First, the correlation between acoustic signal and spectral signal was analyzed and the results showed that the spectral signal from coal pellet samples with 35-ton compaction pressure had a strong correlation with acoustic signal. Second, the influences of shot-to-shot spectral intensities with different normalization methods were analyzed, including total area normalization, channel normalization, background normalization and acoustic normalization. Finally, different normalization models for calorific value were established using the support vector regression (SVR). With the acoustic normalization method, the relative standard deviation (RSD) of shot-to-shot intensities of spectral lines of C (I) 193.1 nm, C (I) 247.8 nm, H (I) 656.3 nm and N (I) 868.1 nm were significantly reduced from 10.16, 6.53, 3.79, 5.21% to 7.01, 4.40, 2.81, 3.54%, respectively. Moreover, compared with model without normalization, the average RSD of sample-to-sample measurements of validation samples based on acoustic normalization method was reduced from 6.25% to 4.16%, and the average relative error (ARE) was reduced from 4.66% to 3.28%. The results demonstrated that the acoustic normalization method can effectively reduce the fluctuations of the shot-to-shot spectral intensities and was an effective method to improve the reproducibility and accuracy of measurement of coal calorific value in LIBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Yuan, Z. Wang, S.L. Lui, Y.T. Fu, Z. Li, J.M. Liu, W. Ni, J. Anal. At. Spectrom. 28, 1045–1053 (2013)

    Article  Google Scholar 

  2. W. Li, J. Lu, M. Dong, S.Z. Lu, J.H. Yu, S.S. Li, J.W. Huang, J. Liu, Energy Fuel 32, 24–32 (2018)

    Article  Google Scholar 

  3. S.C. Yao, J.H. Mo, J.B. Zhao, Y.S. Li, X. Zhang, W.Y. Lu, Z.M. Lu, App. Spectrosc 72(8), 1225–1233 (2018)

    Article  ADS  Google Scholar 

  4. H. Wilde, W. Herzog, J. Radioanal. Nucl. Chem 71(1–2), 253–264 (1982)

    Article  Google Scholar 

  5. M.R. Dong, J.D. Lu, S.C. Yao, J. Li, J.Y. Li, Z.M. Zhong, W.Y. Lu, J. Anal. At. Spectrom. 26, 2183–2188 (2011)

    Article  Google Scholar 

  6. Z. Yue, C. Sun, L. Gao, Y. Zhang, S. Shabbir, W. Xu, M. Wu, L. Zou, Y. Tan, F. Chen, J. Yu, Opt. Express 28, 14345–14356 (2020)

    Article  ADS  Google Scholar 

  7. S. Yao, J. Zhao, J. Xu, Z. Lu, J.L. Xu, Z.M. Lu, J.D. Lu, J. Anal. Atom. Spectrom. 32(4), 766–722 (2017)

    Article  Google Scholar 

  8. W.B. Li, M.R. Dong, S.Z. Lu, S.S. Li, L.P. Wei, J.W. Huang, J.D. Lu, Anal. Methods. 11, 4471–4480 (2019)

    Article  Google Scholar 

  9. J.L. Yu, Z.Y. Hou, Y.Y. Ma, T.Q. Li, Y.T. Fu, Y. Wang, Z. Li, Z. Wang, Spectrochim. Acta B 174, 105992–106002 (2020)

    Article  Google Scholar 

  10. X.W. Li, H.L. Yin, Z. Wang, Y.T. Fu, Z. Li, W.D. Ni, Spectrochim. Acta B 111, 102–107 (2015)

    Article  ADS  Google Scholar 

  11. W.D. Zhou, X.J. Su, H.G. Qian, K.X. Li, X.F. Li, Y.L. Yu, Z.J. Ren, J. Anal. At. Spectrom. 28, 702–710 (2013)

    Article  Google Scholar 

  12. X.L. Li, L. Zhang et al., J. Anal. At. Spectrom. 35, 2928–2934 (2020)

    Article  Google Scholar 

  13. J. Viljanen, Z.W. Sun, Z.T. Alwahabi, Spectrochim. Acta, Part B 118(1), 29–36 (2016)

    Article  ADS  Google Scholar 

  14. P. Zhang, L.X. Sun, H.B. Yu, P. Zeng, L.F. Qi, Y. Xin, J. Anal. At. Spectrom. 32(12), 2371–2377 (2017)

    Article  Google Scholar 

  15. S. Lu, S. Shen, J. Huang, M. Dong, J. Lu, W. Li, Spectrochim. Acta, Part B 150, 49–58 (2018)

    Article  ADS  Google Scholar 

  16. B. Salle, J.L. Lacour, P. Mauchien, P. Fichet, S. Maurice, G. Manhes, Spectrochim. Acta, Part B 61, 301–313 (2006)

    Article  ADS  Google Scholar 

  17. Z. Wang, J. Feng, L. Li, W. Ni, Z. Li, J. Anal. At. Spectrom. 26, 2289–2299 (2011)

    Article  Google Scholar 

  18. J.L. Guezenoc, A. Gallet-Budynekb, B. Bousquet, Spectrochim. Acta Part B 160, 105688–105696 (2019)

    Article  Google Scholar 

  19. J. Pisonero, B. Fernández, D. Günther, J. Anal. At. Spectrom. 24, 1145–1160 (2009)

    Article  Google Scholar 

  20. D.W. Hahn, N. Omenetto, Appl. Spectrosc 66, 347–419 (2012)

    Article  ADS  Google Scholar 

  21. T.A. Labutin, S.M. Zaytsev, A.M. Popov, I.V. Seliverstova, S.E. Bozhenko, N.B. Zorov, Spectrochim. Acta, Part B 87, 57–64 (2013)

    Article  ADS  Google Scholar 

  22. B.Z. Nikita, A.A. Gorbatenko, T.A. Labutin, A.M. Popov, Spectrochimica Acta Part B 65, 642–657 (2010)

    Article  ADS  Google Scholar 

  23. D. Body, B.L. Chadwick, Spectrochim. Acta Part B 56, 725–736 (2001)

    Article  ADS  Google Scholar 

  24. T. Takahashi, B. Thornton, T. Sato, T. Ohki, K. Ohki, T. Sakka, Appl. Opt. 57(20), 5872–5883 (2018)

    Article  ADS  Google Scholar 

  25. I.B. Gornushkin, B.W. Smith, G.E. Potts, N. Omenetto, J.D. Winefordner, Anal. Chem. 71, 5447–5449 (1999)

    Article  Google Scholar 

  26. Y.S. Zhang, M.D. Dong, L.H. Cheng, L.P. Wei, J.B. Cai, J.D. Lu, J. Anal. At. Spectrom 35, 810–818 (2020)

    Article  Google Scholar 

  27. L. Lazarek, J.A. Antonczak et al., Spectrochim. Acta Part B 97, 74–78 (2014)

    Article  ADS  Google Scholar 

  28. P. Zhang, L.X. Sun, H.B. Yu, P. Zeng, L.F. Qi, Y. Xin, Anal. Chem. 90(7), 4686–4694 (2018)

    Article  Google Scholar 

  29. Q.Y. Li, Y. Tian, B.Y. Xue, N. Li, W.Q. Ye, Y. Lu, R.E. Zheng, J. Anal. At. Spectrom. 35, 366–376 (2020)

    Article  Google Scholar 

  30. S. Conesa, S. Palanco, J.J. Laserna, Spectrochim. Acta Part B 59, 1395–1401 (2004)

    Article  ADS  Google Scholar 

  31. C. Chaleard, P. Mauchien, N. Andre, J. Uebbing, J.L. Lacour, C. Geertsen, J. Anal. At. Spectrom. 12, 183–188 (1997)

    Article  Google Scholar 

  32. L. Grad, J. Mozina, Appl. Surf. Sci. 69, 370–375 (1993)

    Article  ADS  Google Scholar 

  33. A. Hrdlička, L. Zaorálková et al., Spectrochim. Acta Part B 64, 74–78 (2009)

    Article  ADS  Google Scholar 

  34. N.H. Cheung, C.W. Ng, W.F. Ho, E.S. Yeung, Appl. Surf. Sci. 127, 274–277 (1998)

    Article  ADS  Google Scholar 

  35. B. Chide, S. Maurice et al., Spectrochim. Acta Part B 153, 50–60 (2019)

    Article  ADS  Google Scholar 

  36. G. Chen, E.S. Yeung, Anal. Chem. 60, 2258–2263 (1988)

    Article  Google Scholar 

  37. F. Anabitarte, L. Rodríguez, J. López, A. Cobo, Appl. Opt. 51, 8306–8314 (2002)

    Article  ADS  Google Scholar 

  38. P. Lu, Z. Zhuo, W.H. Zhang, J. Tang, H.L. Tang, J.Q. Lu, Appl. Optics. 59(22), 6443–6451 (2020)

    Article  ADS  Google Scholar 

  39. I. Guyon, J. Weston, S. Barnhill, V. Vapni, Mach. Learn. 46, 389–422 (2002)

    Article  Google Scholar 

  40. W.H. Zhang, Z. Zhuo, P. Lu, J. Tang, H.L. Tang, J.Q. Lu, T. Xing, Y. Wang, J. Anal. Atom Spectrom. 35, 1621–1631 (2020)

    Article  Google Scholar 

  41. Standardization Administration of the People’s Republic of China (SAC), GB/T 213-2008, Determination of Calorific Value of Coal, China, (2008)

  42. J. Diaci, J. Mozina, Opt. Commun. 90, 73–78 (1992)

    Article  ADS  Google Scholar 

  43. C. Stauter, P. Gérard, J. Fontaine, T. Engel, Appl. Surf. Sci. 109, 174–178 (1997)

    Article  ADS  Google Scholar 

  44. T.A. Labutin, A.M. Popov, A.A. Gorbatenko, N.B. Zorov, Spectrochim. Acta B 60, 775–782 (2005)

    Article  ADS  Google Scholar 

  45. W.H. Zhang, Z. Zhuo, P. Lu, T.F. Sun, W.L. Sun, J.Q. Lu, Spectrochim. Acta B. 177, 106076 (2021)

    Article  Google Scholar 

  46. G.J. Szekely, M.L. Rizzo, N.K. Bakirov, Ann. Statist. 35(6), 2769–2794 (2007)

    Article  MathSciNet  Google Scholar 

  47. G.J. Szekely, M.L. Rizzo, Ann. Appl. Stat. 3, 1233–1303 (2009)

    MathSciNet  Google Scholar 

  48. G.J. Szekely, M.L. Rizzo, J. Multivariate Anal. 117, 193–213 (2013)

    Article  MathSciNet  Google Scholar 

  49. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Apl. Spectrosc. 59, 853–860 (2005)

    Article  ADS  Google Scholar 

  50. P. Lu, Z. Zhuo, W.H. Zhang, J. Tang, Y. Wang, H.L. Zhou, X.L. Huang, T.F. Sun, J. Lu, Appl. Phys. B-laser O 127, 19 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong province major science and technology innovation project (No. 2018CXGC0806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingqi Lu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Zhuo, Z., Zhang, W. et al. Determination of calorific value in coal by LIBS coupled with acoustic normalization. Appl. Phys. B 127, 82 (2021). https://doi.org/10.1007/s00340-021-07626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07626-5

Navigation