Skip to main content
Log in

A Novel Two-Step Spectral Recovery Framework for Coal Quality Assessment by Near-Infrared Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Near-infrared spectroscopy (NIRS) is an effective and efficient technique for evaluating coal quality. The original spectra might be contaminated by scattering interference and random noise. We propose a novel artifact removal framework to recover the buried information and to overcome limitations of currently available preprocessing techniques, such as the multiplicative scatter correction (MSC), as well as a smoothing process. The two-step framework is mainly constructed by MSC and Savitzky–Golay convolution (S-SGC) . Moreover, a particle swarm optimization (PSO) algorithm is used to search the optimal parameters within the framework. In addition, the spectra are collected from coal samples with different particle sizes (i.e., 0.2 and 3 mm), which may carry different characteristics and interfering information. We have analyzed seven kinds of coal properties, such as moisture (%), ash (%), volatile matter (%), and heating value (MJ/kg) via partial least square regression (PLSR) models in order to verify the effectiveness of the proposed method. The results show that the proposed two-step method provides superior performances for zooming in the spectral characteristic peaks and filtering the random noise simultaneously, which mainly benefits from the appropriate combination of MSC and S-SGC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Andrés and M. T. Bona, Talanta, 70, No. 4, 711–719 (2006)

    Article  Google Scholar 

  2. Q. Zhu, IEA Clean Coal Centre, 4 (2014).

  3. Y. Zhao, L. Zhang, S. X. Zhao, Y. F. Li, Y. Gong, L. Dong, W. G. Ma, W. B. Yin, S. C. Yao, J. D. Lu, L. T. Xiao, and S. T. Jia, Front. Phys.-Beijing, 11, No. 6, 114211 (2016).

    Article  ADS  Google Scholar 

  4. Y. S. Wang, M. Yang, G. Wei, R. Hu, Z. Luo, and G. Li, Sensor. Actuat. B: Chem., 193, No. 3, 723–729 (2014).

    Article  Google Scholar 

  5. M. Lei, M. Li, and Y. Shi, CIESC J., 63, No. 12, 3991–3995 (2012).

    Google Scholar 

  6. M. T. Bona and J. M. Andrés, Talanta, 72, 1423–1431 (2007).

    Article  Google Scholar 

  7. W. K. Dong, J. M. Lee, and J. S. Kim, Korean. J. Chem. Eng., 26, No. 2, 489–495 (2009).

    Article  Google Scholar 

  8. J. M. Andrés and M. T. Bona, Anal. Chim. Acta, 535, Nos. 1–2, 123–132 (2005).

    Article  Google Scholar 

  9. H. Jia, Q. Fu, C. J. Han, D. B. Zou, and W. L. Chen, Spectrosc. Spectr. Anal., 32, No. 11, 3010 (2012).

    Google Scholar 

  10. P. Sirisomboon and J. Nawayon, J. Near. Infrared Spectrosc., 24, No. 2, 191–198 (2016).

    Article  ADS  Google Scholar 

  11. R. Tang, K. Chen, C. Jiang, and Ch. Li, J. Appl. Spectrosk., 84, No. 4, 627–632 (2017).

    Article  ADS  Google Scholar 

  12. H. Sato, M. Kiguchia, F. Kawaguchib, and A. Makiac, Neuroimage, 21, No. 4, 1554–1562 (2004).

    Article  Google Scholar 

  13. Å. Rinnan, F. Berg, and S. Engelsen, Trac-Trend. Anal. Chem., 28, No. 10, 1201–1222 (2009).

    Article  Google Scholar 

  14. X. Yang and F. Wang, Adv. Mater. Res., 898, 831–834 (2014).

    Article  Google Scholar 

  15. D. B. Kovačević, J. G. Kljusurić, P. Putnik, T. Vukušić, Z. Herceg, and V. Dragović-Uzelac, Food Chem., 212, 323–331 (2016).

    Article  Google Scholar 

  16. Z. D. Lin, Y. B. Wang, R. J. Wang, L. S. Wang, C. P. Lu, Z. Y. Zhang, L. T. Song, and Y. Liu, J. Appl. Spectrosc., 84, No. 3, 529–534 (2017).

    Article  ADS  Google Scholar 

  17. P. Geladi, D. Macdougall, and H. Martens, Appl. Spectrosc., 39, No. 3, 491–500 (1985).

    Article  ADS  Google Scholar 

  18. P. A. Gorry, Anal. Chem., 62, No. 6, 570–573 (1990).

    Article  Google Scholar 

  19. Y. Shao, R. S. Lunetta, B. Wheeler, J. S. Liames, and J. B. Campbell, Remote Sens. Environ., 174, 258–265 (2016).

    Article  ADS  Google Scholar 

  20. P. Kubelka and F. Munk, Zeit. für Tekn. Physik, 12, 593 (1931).

    Google Scholar 

  21. H. Martens, J. P. Nielsen, and S. B. Engelsen, Anal. Chem., 75, No. 3, 394–404 (2003).

    Article  Google Scholar 

  22. H. Q. Yang, B.Y. Kuang, and A. M. Mouazen, Key Eng. Mater., 10, No. 3, 467–469 (2011).

    Google Scholar 

  23. M. Lei, M. Li, N. Wu, and Y. N. Li, Spectrosc. Spectr. Anal., 33, No. 1, 65–68 (2013).

    ADS  Google Scholar 

  24. H. Chen, T. Pan, J. Chen, and Q. Lu, Chemometr. Intell. Lab., 107, No. 1, 139–146 (2011).

    Article  Google Scholar 

  25. H. Chen, Q. Song, G. Tang, Q. Feng, and L. Lin, ISRN Spectrosc., 2013, 1–9 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Li.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 602–607, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Yu, X., Li, M. et al. A Novel Two-Step Spectral Recovery Framework for Coal Quality Assessment by Near-Infrared Spectroscopy. J Appl Spectrosc 86, 655–660 (2019). https://doi.org/10.1007/s10812-019-00874-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00874-6

Keywords

Navigation