Skip to main content
Log in

Entangled squeezed coherent states: generation and their nonclassical properties in comparison with other entangled states

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, at first we consider special type of entangled states named “entangled squeezed coherent states” by using squeezed coherent states. Next, we study the entanglement characteristics of these entangled states by evaluating concurrence. In the continuation, we investigate some of their nonclassical properties such as quantum statistics which contained sub-Poissonian photon statistics and the oscillatory photon number distribution, second-order correlation function and quadrature squeezing for different squeezing values of two modes. In addition, we compare the results of the “entangled squeezed coherent states” with those of the common entangled states such as “entangled coherent states”, “entangled squeezed vacuum states” and “entangled squeezed one-photon states”. Finally, using the proposed theoretical scheme in the previous works, we will generate the entangled squeezed coherent states with different initial conditions. In this scheme, a \(\Lambda\)-type three-level atom interacts with the two-mode quantized field in the presence of two strong classical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935)

    Google Scholar 

  2. W. Diffie, M. Hellman, IEEE Trans. Inf. Theory 22, 644 (1976)

    Google Scholar 

  3. A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  4. L. Vaidman, Phys. Rev. A 49, 1473 (1994)

    ADS  Google Scholar 

  5. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)

    ADS  Google Scholar 

  6. J. Joo, W.J. Munro, T.P. Spiller, Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Google Scholar 

  7. A. Barenco, D. Dutch, A. Ekert, R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995)

    ADS  Google Scholar 

  8. D.P. DiVincenzo, Science 270, 255 (1995)

    ADS  MathSciNet  Google Scholar 

  9. U. Akram, W.P. Bowen, G.J. Milburn, New J. Phys. 15, 093007 (2013)

    ADS  Google Scholar 

  10. S. Dey, A. Fring, V. Hussin, Int. J. Mod. Phys. B 31, 1650248 (2017)

    ADS  Google Scholar 

  11. B.C. Sanders, Phys. Rev. A 45, 6811 (1992)

    ADS  Google Scholar 

  12. S.J. Van Enk, O. Hirota, Phys. Rev. A 64, 022313 (2000)

    Google Scholar 

  13. X. Wang, B.C. Sanders, Phys. Rev. A 65, 012303 (2001)

    ADS  Google Scholar 

  14. A. Karimi, M.K. Tavassoly, J. Opt. Soc. Am. B 31, 2345 (2014)

    ADS  Google Scholar 

  15. A. Karimi, M.K. Tavassoly, Commun. Theor. Phys. 64, 341 (2015)

    ADS  Google Scholar 

  16. A. Karimi, Int. J. Theor. Phys. 56, 2703 (2017)

    MathSciNet  Google Scholar 

  17. X.H. Cai, L.M. Kuang, Chin. Phys. 11, 870 (2002)

    ADS  Google Scholar 

  18. L. Zhou, L.M. Kuang, Phys. Lett. A 302, 273 (2002)

    ADS  Google Scholar 

  19. X.H. Cai, L.M. Kuang, Chin. Phys. Lett. 19, 1407 (2002)

    ADS  Google Scholar 

  20. L. Xu, L.M. Kuang, J. Phys. A Math. Gen. 39, L191 (2006)

    ADS  Google Scholar 

  21. H.M. Li, H.C. Yuan, H.Y. Fan, Int. J. Theor. Phys. 48, 2849 (2009)

    Google Scholar 

  22. A. Karimi, M.K. Tavassoly, Phys. Scr. 90, 015101 (2014)

    ADS  Google Scholar 

  23. A. Karimi, M.K. Tavassoly, Int. J. Theor. Phys. 55, 563 (2016)

    Google Scholar 

  24. E. Dibakar, A. Karimi, M.K. Tavassoly, Phys. Scr. 90, 085102 (2015)

    ADS  Google Scholar 

  25. A. Karimi, M.K. Tavassoly, Chin. Phys. B 25, 040303 (2016)

    Google Scholar 

  26. A. Karimi, Appl. Phys. B 123, 181 (2017)

    ADS  Google Scholar 

  27. R.L.Matos de Filho, W. Vogel, Phys. Rev. A 54, 4560 (1996)

    ADS  Google Scholar 

  28. V. Man’kov, G. Marmo, E. Sudarshan, F. Zaccaria, Phys. Scr. 55, 528 (1997)

    ADS  Google Scholar 

  29. M. Dakna, T. Anhut, T. Opatrn’y, L. Knoll, D.G. Welsch, Phys. Rev. A 55, 3184 (1997)

    ADS  Google Scholar 

  30. C.C. Gerry, Phys. Rev. A 59, 4095 (1999)

    ADS  MathSciNet  Google Scholar 

  31. R. Roknizadeh, M.K. Tavassoly, J. Phys. A Math. Gen. 37, 8111 (2004)

    ADS  Google Scholar 

  32. A.M. Lance, H. Jeong, N.B. Grosse, T. Symul, T.C. Ralph, P.K. Lam, Phys. Rev. A 73, 041801 (2006)

    ADS  Google Scholar 

  33. A. Karimi, M.K. Tavassoly, Laser Phys. 25, 115201 (2015)

    ADS  Google Scholar 

  34. A. Karimi, M.K. Tavassoly, Quantum. Inf. Process. 15, 1513 (2016)

    ADS  MathSciNet  Google Scholar 

  35. J.J. Gong, P.K. Aravind, Am. J. Phys. 58, 1003 (1990)

    ADS  Google Scholar 

  36. K. Zhu, Q. Wang, X. Li, J. Opt. Soc. Am. B 10, 1287 (1993)

    ADS  Google Scholar 

  37. H.Y. Fan, M.A. Xiao, Phys. Lett. A 220, 81 (1996)

    ADS  MathSciNet  Google Scholar 

  38. Z. Shi-biao, G. Guang-can, Chin. Phys. Lett. 14, 273 (1997)

    ADS  Google Scholar 

  39. A.F. Obada, G.A. Al-Kader, J. Opt. B 7, S635 (2005)

    Google Scholar 

  40. S. Dey, A. Fring, Phys. Rev. D 86, 064038 (2012)

    ADS  Google Scholar 

  41. G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  42. J. Glauber, Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  Google Scholar 

  43. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  44. L.X. Xia, G.X. Xiong, Generation for Entangled Squeezed Coherent States of Two Cavity Modes, Symposium on Photonics and Optoelectronics (2009)

  45. A. DasGupta, Am. J. Phys. 64, 1422 (1996)

    ADS  Google Scholar 

  46. K.B. Møller, T.G. Jørgensen, J.P. Dahl, Phys. Rev. A 54, 5378 (1996)

    ADS  Google Scholar 

  47. M. Angelova, A. Hertz, V. Hussin, J. Phys. A Math. Theor. 46, 129501 (2013)

    ADS  Google Scholar 

  48. A. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    MATH  Google Scholar 

  49. J.A. Bergou, M. Hillery, D. Yu, Phys. Rev. A 43, 515 (1991)

    ADS  Google Scholar 

  50. H.-C. Fu, R. Sasaki, Phys. Rev. A 53, 3836 (1996)

    ADS  Google Scholar 

  51. N. Alvarez, V. Hussin, J. Math. Phys. 43, 2063 (2002)

    ADS  MathSciNet  Google Scholar 

  52. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    ADS  Google Scholar 

  53. X.G. Wang, J. Phys. A Math. Gen. 35, 165 (2002)

    ADS  Google Scholar 

  54. L.M. Kuang, L. Zhou, Phys. Rev. A 68, 043606 (2003)

    ADS  Google Scholar 

  55. A. Mann, B.C. Sanders, W.J. Munro, Phys. Rev. A 50, 989 (1995)

    ADS  Google Scholar 

  56. P. Rungta, V. Buzěk, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)

    ADS  MathSciNet  Google Scholar 

  57. L. Mandel, Opt. Lett. 4, 205 (1979)

    ADS  Google Scholar 

  58. L. Davidovich, Rev. Mod. Phys. 68, 127 (1996)

    ADS  MathSciNet  Google Scholar 

  59. H. Paul, Rev. Mod. Phys. 54, 1061 (1982)

    ADS  Google Scholar 

  60. T.Q. Song, H.Y. Fan, J. Phys. A Math. Gen. 35, 1071 (2002)

    ADS  Google Scholar 

  61. P. Kok, B.W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Dibaji, H. Entangled squeezed coherent states: generation and their nonclassical properties in comparison with other entangled states. Appl. Phys. B 126, 24 (2020). https://doi.org/10.1007/s00340-020-7375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7375-9

Navigation