Skip to main content
Log in

Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, after a brief review on the coherent states and squeezed states, we introduce two classes of entangled coherent-squeezed states. Next, in order to generate the introduced entangled states, we present a theoretical scheme based on the resonant atom-field interaction. In the proposed model, a \(\varLambda \)-type three-level atom interacts with a two-mode quantized field in the presence of two strong classical fields. Then, we study the amount of entanglement of the generated entangled states using the concurrence and linear entropy. Moreover, we evaluate a few of their nonclassical properties such as photon statistics, second-order correlation function, and quadrature squeezing and establish their nonclassicality features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 823 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barenco, A., Dutch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE Press, New York (1984)

  6. de Matos Filho, R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A 54, 4560 (1996)

    Article  ADS  Google Scholar 

  7. Man’kov, V., Marmo, G., Sudarshan, E., Zaccaria, F.: f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997)

    Article  ADS  Google Scholar 

  8. Abbasi, O., Tavassoly, M.K.: Superpositions of the dual family of nonlinear coherent states and their non-classical properties. Opt. Commun. 283, 2566 (2010)

    Article  ADS  Google Scholar 

  9. Roknizadeh, R., Tavassoly, M.K.: The construction of some important classes of generalized coherent states: the nonlinear coherent states method. J. Phys. A Math. Gen. 37, 8111 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dakna, M., Anhut, T., Opatrn’y, T., Knoll, L., Welsch, D.G.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184 (1997)

    Article  ADS  Google Scholar 

  11. Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium. Phys. Rev. A 59, 4095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101 (2004)

    Article  ADS  Google Scholar 

  13. Lance, A.M., Jeong, H., Grosse, N.B., Symul, T., Ralph, T.C., Lam, P.K.: Quantum-state engineering with continuous-variable postselection. Phys. Rev. A 73, 041801 (2006)

    Article  ADS  Google Scholar 

  14. Kassahun, F.: Fundamental of Quantum Optics. Lulu, North Calorina (2008)

    Google Scholar 

  15. Karimi, A., Tavassoly, M.K.: Single-mode nonlinear excited entangled coherent states and their nonclassical properties. Phys. Scr. 90, 015101 (2015)

    Article  ADS  Google Scholar 

  16. Karimi, A., Tavassoly, M.K.: Quantum engineering and nonclassical properties of SU (1, 1) and SU (2) entangled nonlinear coherent states. J. Opt. Soc. Am. B 31, 2345 (2014)

    Article  ADS  Google Scholar 

  17. Karimi, A., Tavassoly, M.K.: Production, entanglement and polarization of nonlinear excited entangled coherent states of some realizations of the SU (1,1) and SU (2) groups. Int. J. Theor. Phys. (2015). doi:10.1007/s10773-015-2693-0

  18. Karimi, A., Tavassoly, M.K.: Production of the superposition of nonlinear coherent states and entangled nonlinear coherent states. Commun. Theor. Phys. 64, 341 (2015)

    Article  ADS  MATH  Google Scholar 

  19. Wu, L.A., Kimble, H.J., Hall, J.L., Wu, H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

    Article  ADS  Google Scholar 

  20. Mandel, L.: Squeezing and photon antibunching in harmonic generation. Opt. Commun. 42, 437 (1982)

    Article  ADS  Google Scholar 

  21. Hillery, M.: Squeezing of the square of the field amplitude in second harmonic generation. Opt. Commun. 62, 135 (1987)

    Article  ADS  Google Scholar 

  22. Olsen, M.K., Horowicz, R.J.: Squeezing in the sum and difference fields in second harmonic generation. Opt. Commun. 168, 135 (1999)

    Article  ADS  Google Scholar 

  23. Gong, J.J., Arvind, P.K.: Higher-order squeezing in three-and four-wave mixing processes with loss. Phys. Rev. A 46, 1586 (1992)

    Article  ADS  Google Scholar 

  24. Marian, P.: Higher-order squeezing properties and correlation functions for squeezed number states. Phys. Rev. A 44, 3325 (1991)

    Article  ADS  Google Scholar 

  25. Marian, P.: Higher-order squeezing and photon statistics for squeezed thermal states. Phys. Rev. A 45, 2044 (1992)

    Article  ADS  Google Scholar 

  26. Slusher, R.E., Hollberg, L.W., Yurke, B., Mertz, J.C., Valley, J.F.: Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  27. Slusher, R.E., Yurke, B., Mertz, J.: Experimental progress in intracavity generation of squeezed light using resonant atomic nonlinearities. J. Mod. Opt. 34, 761 (1987)

    Article  ADS  Google Scholar 

  28. Dibakar, E., Karimi, A., Tavassoly, M.K.: Excitation and depletion of entangled squeezed states: their properties and generation. Phys. Scr. 90, 085102 (2015)

    Article  ADS  Google Scholar 

  29. Barnett, S.M., Knight, P.L.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. 2, 467 (1985)

    Article  ADS  Google Scholar 

  30. Barnett, S.M., Knight, P.L.: Squeezing in correlated quantum systems. J. Mod. Opt. 34, 841 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hong-yi, F.: Squeezed states: operators for two types of one-and two-mode squeezing transformations. Phys. Rev. A 41, 1526 (1990)

    Article  ADS  Google Scholar 

  32. Karimi, A., Tavassoly, M.K.: Generation of entangled squeezed states: their entanglement and quantum polarization. Laser Phys. 25, 115201 (2015)

    Article  ADS  Google Scholar 

  33. Schrödinger, E.: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664 (1926)

    Article  ADS  MATH  Google Scholar 

  34. Stoler, D.: Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  35. Stoler, D.: Equivalence classes of minimum-uncertainty packets. II. Phys. Rev. D 4, 1935 (1971)

    Article  ADS  Google Scholar 

  36. Slusher, R.E., Hollberg, L.W., Yurke, B., Mertz, J.C., Valley Slusher, J.F.: Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  37. Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, New York (2005)

    Google Scholar 

  38. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  39. Mann, A., Sanders, B.C., Munro, W.J.: Bell’s inequality for an entanglement of nonorthogonal states. Phys. Rev. A 50, 989 (1995)

    Article  ADS  Google Scholar 

  40. Rungta, P., Buzěk, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  41. Wang, X.G.: Bipartite entangled non-orthogonal states. J. Phys. A Math. Gen. 35, 165 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Kuang, L.M., Zhou, L.: Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003)

    Article  ADS  Google Scholar 

  43. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  44. Agarwal, G.S., Biswas, A.: Quantitative measures of entanglement in pair-coherent states. J. Opt. B Quantum Semicl. Opt. 7, 350 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. Mandel, L.: Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  46. Davidovich, L.: Sub-Poissonian processes in quantum optics. Rev. Mod. Phys. 68, 127 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  47. Paul, H.: Photon antibunching. Rev. Mod. Phys. 54, 1061 (1982)

    Article  ADS  Google Scholar 

  48. Song, T.Q., Fan, H.Y.: Properties of two-mode nonlinear squeezed vacuum and coherent squeezed vacuum states. J. Phys. A Math. Gen. 35, 1071 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  50. Berrada, K., Khalek, S.A., Ooi, C.R.: Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 86, 033823 (2012)

    Article  ADS  Google Scholar 

  51. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced positioning and clock synchronization. Nature 412, 417 (2001)

    Article  ADS  Google Scholar 

  52. Ren, C., Hofmann, H.F.: Clock synchronization using maximal multipartite entanglement. Phys. Rev. A 86, 014301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Tavassoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Tavassoly, M.K. Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties. Quantum Inf Process 15, 1513–1527 (2016). https://doi.org/10.1007/s11128-015-1223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1223-6

Keywords

Navigation