Skip to main content
Log in

The influence of target surface position on plasma characteristics in dual-pulse fiber-optic laser-induced breakdown spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-produced plasmas of dual-pulse fiber-optic laser-induced breakdown spectroscopy with different target positions relative to the waist region of laser focusing are studied using fast imaging and optical emission spectroscopy (OES). The laser energy of the two laser pulses is both maintained at around 18 mJ (i.e. the total energy is 36 mJ). The inter-pulse delay is kept at 250 ns. Ten spot sizes changing from 947 to 543 μm are obtained by precisely adjusting the distance between the focusing lens and the target surface. The profile of laser beam output from fiber shows a distinct top-hat shape. When approaching the dual-pulse waist region, the self-absorption and self-reversal of matrix iron lines gradually become intense while the plasma emission is enhanced, but the signal-to-noise ratio of minor elements gradually decreases. Under a similar spot size, the emission intensity with the target surface behind the waist region is weaker than that in front of the waist region and also with greater jitters. The target surface position is optimized to deviate from the waist region by ~ 1.3–1.6 mm towards the focusing lens for improving SNR of minor elements, corresponding to the lens-to-sample distances of 11.8–12.1 mm. Plasma morphology has undergone a transformation from stream- to umbrella-like structure using the recorded Intensified Charge-Coupled Device (ICCD) images. The expansion distance of the plasma front is increased from 1.07 to 1.28 mm, and the plasma volume is increased from 0.59 to 1.60 mm3. Besides, by utilization of OES, the maximum variation of plasma temperature and line broadening width rise to 2702 K from 1630 and to 0.0492 from 0.0316 nm along the vertical direction. The significant increase of optical thickness and nonuniformity of plasma temperature and density is the main reason for the intensification of self-absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Fortes, J. Moros, P. Lucena et al., Anal. Chem. 85, 640 (2013)

    Article  Google Scholar 

  2. D. Prochazka, P. Pořízka, J. Novotný et al., J. Anal. At. Spectrom. 35, 293 (2020)

    Article  Google Scholar 

  3. B.E. Naes, S. Umpierrez, S. Ryland et al., Almirall, Spectrochim. Acta Part B 63, 1145 (2008)

    Article  Google Scholar 

  4. Y. Zhang, W. Ning, D. Dai, J. Phys. D Appl. Phys. 52(4), 045203 (2018)

    Article  ADS  Google Scholar 

  5. J. Li, Z. Zhu, R. Zhou et al., Anal. Chem. 89, 8134 (2017)

    Article  Google Scholar 

  6. W. Li, X. Li, X. Li et al., Appl. Spectrosc. Rev. 55, 1 (2020)

    Article  ADS  Google Scholar 

  7. D. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)

    Article  ADS  Google Scholar 

  8. A. Whitehouse, J. Young, I. Botheroyd et al., Spectrochim. Acta Part B 56, 821 (2001)

    Article  ADS  Google Scholar 

  9. J. Wu, Y. Qiu, X. Li et al., J. Phys. D Appl. Phys. 53, 023001 (2020)

    Article  ADS  Google Scholar 

  10. Y. Qiu, J. Wu, H. Yu et al., Appl. Surf. Sci. 533, 147497 (2020)

    Article  Google Scholar 

  11. A. Rai, F. Yueh, J. Singh, Rev. Sci. Instrum. 73, 3589 (2002)

    Article  ADS  Google Scholar 

  12. V. Lednev, A. Dormidonov, P. Sdvizhenskii et al., J. Anal. At. Spectrom. 33, 294 (2018)

    Article  Google Scholar 

  13. C. Bohling, D. Scheel, K. Hohmann et al., Appl. Opt. 45, 3817 (2006)

    Article  ADS  Google Scholar 

  14. C. Dumitrescu, P. Puzinauskas, S. Olcmen et al., Appl. Spectrosc. 61, 1338 (2007)

    Article  ADS  Google Scholar 

  15. M. Saeki, A. Iwanade, C. Ito et al., J. Nucl. Sci. Technol. 51, 930 (2014)

    Article  Google Scholar 

  16. S. Guirado, F.J. Fortes, J.J. Laserna, Talanta 137, 182 (2015)

    Article  Google Scholar 

  17. Q. Zeng, L. Guo, X. Li et al., J. Anal. At. Spectrom. 30, 403 (2015)

    Article  Google Scholar 

  18. Y. Qiu, J. Wu, Z. Zhang et al., Spectrochim. Acta Part B 155, 12 (2019)

    Article  ADS  Google Scholar 

  19. D. Cremers, L. Radziemski, T. Loree, Appl. Spectrosc. 38, 721 (1984)

    Article  ADS  Google Scholar 

  20. Y. Wang, A. Chen, S. Li et al., J. Anal. At. Spectrom. 31, 497 (2015)

    Article  Google Scholar 

  21. R. Sanginés, H. Sobral, Spectrochim. Acta Part B 88, 150 (2013)

    Article  ADS  Google Scholar 

  22. J. Wang, X. Li, H. Li et al., Appl. Phys. B 123, 131 (2017)

    Article  ADS  Google Scholar 

  23. K. Rifai, F. Vidal, M. Chaker et al., J. Anal. At. Spectrom. 28, 388 (2013)

    Article  Google Scholar 

  24. D. Fobar, X. Xiao, M. Burger et al., Prog. Nucl. Energy 109, 188 (2018)

    Article  Google Scholar 

  25. X. Xiao, S. Berre, D. Fobar et al., Spectrochim. Acta Part B 141, 44 (2018)

    Article  ADS  Google Scholar 

  26. Y. Li, D. Tian, Y. Ding et al., Appl. Spectrosc. Rev. 53, 1 (2018)

    Article  ADS  Google Scholar 

  27. R. Viskup, B. Praher, T. Linsmeyer et al., Spectrochim. Acta Part B 65, 935 (2010)

    Article  ADS  Google Scholar 

  28. R. Ahmed, M. Baig, Opt. Laser Technol. 65, 113 (2015)

    Article  ADS  Google Scholar 

  29. I. Elnasharty, F. Doucet, J. Gravel et al., J. Anal. At. Spectrom. 29, 1660 (2014)

    Article  Google Scholar 

  30. J. Mo, Y. Chen, R. Li, Appl. Opt. 53, 7516 (2014)

    Article  ADS  Google Scholar 

  31. J. Lagrange, J. Wolfman, O. Motret, J. Appl. Phys. 111, 063301 (2012)

    Article  ADS  Google Scholar 

  32. X. Li, W. Wei, J. Wu et al., J. Appl. Phys. 113, 243304 (2013)

    Article  ADS  Google Scholar 

  33. S. Harilal, P. Diwakar, M. Polek et al., Opt. Exp. 23, 15608 (2015)

    Article  ADS  Google Scholar 

  34. D. Zhang, A. Chen, X. Wang et al., Spectrochim. Acta Part B 143, 71 (2018)

    Article  ADS  Google Scholar 

  35. W. Xu, A. Chen, Q. Wang et al., J. Anal. At. Spectrom. 34, 1018 (2019)

    Article  Google Scholar 

  36. D. Hahn, N. Omenetto, Appl. Spectrosc. 64, 335 (2010)

    Article  ADS  Google Scholar 

  37. Thorlabs. Inc. (2020). https://www.thorlabs.com/images/TabImages/MM_Fiber_Lab.pdf. Accessed 16 Jan 2020

  38. I. Gornushkin, J. Anzano, L. King et al., Spectrochim. Acta Part B 54, 491 (1999)

    Article  ADS  Google Scholar 

  39. A.M. El Sherbini, T.M. El Sherbini, H. Hegazy et al., Spectrochim. Acta B 60, 1573 (2005)

    Article  ADS  Google Scholar 

  40. R. Yi, L. Guo, C. Li et al., J. Anal. At. Spectrom. 31, 961 (2016)

    Article  Google Scholar 

  41. A. Guarnaccio, G.P. Parisi, D. Mollica et al., Spectrochim. Acta Part B 101, 261 (2014)

    Article  ADS  Google Scholar 

  42. Y. Qiu, A. Wang, Y. Liu et al., Phys. Plasmas 27, 083516 (2020)

    Article  ADS  Google Scholar 

  43. X. Wang, W. Han, C. Chen et al., IEEE Trans. Plasma Sci. 44, 2766 (2016)

    Article  ADS  Google Scholar 

  44. I. Gornushkin, V. Tobias, A. Kazakov, Spectrochim. Acta Part B 147, 149 (2018)

    Article  ADS  Google Scholar 

  45. A. Matsumoto, H. Ohba, M. Toshimitsu et al., Spectrochim. Acta Part B 142, 37 (2018)

    Article  ADS  Google Scholar 

  46. Y. Zhang, W. Ning, D. Dai et al., Plasma Sources Sci. T. 28, 075003 (2019)

    Article  ADS  Google Scholar 

  47. J. Wu, W. Wei, X. Li et al., Appl. Phys. Lett. 102, 164104 (2013)

    Article  ADS  Google Scholar 

  48. S. Harilal, P. Diwakar, A. Hassanein, Appl. Phys. Lett. 103, 041102 (2013)

    Article  ADS  Google Scholar 

  49. S. Harilal, G. Miloshevsky, P. Diwakar et al., Phys. Plasmas 19, 083504 (2012)

    Article  ADS  Google Scholar 

  50. D. Wiggins, C. Raynor, J. Johnson III., Phys. Plasmas 17, 103303 (2010)

    Article  ADS  Google Scholar 

  51. P. Diwakar, S. Harilal, J. Freeman et al., Spectrochim. Acta Part B 87, 65 (2013)

    Article  ADS  Google Scholar 

  52. Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005)

    Article  ADS  Google Scholar 

  53. D. Lee, S. Han, T. Kim et al., Anal. Chem. 83, 9456 (2011)

    Article  Google Scholar 

  54. X. Lin, H. Li, Q. Yao, Plasma Sci. Technol. 17, 953 (2015)

    Article  ADS  Google Scholar 

  55. W. Sdorra, K. Niemax, Mikrochim. Acta 107, 319 (1992)

    Article  Google Scholar 

  56. X. Li, W. Wei, J. Wu, S. Jia, A. Qiu, J. Phys. D Appl. Phys. 46, 475207 (2013)

    Article  ADS  Google Scholar 

  57. Y. Qiu, J. Wu, X. Li et al., Spectrochim. Acta Part B 149, 48 (2018)

    Article  ADS  Google Scholar 

  58. H. Moon, K. Herrera, N. Omenetto et al., Spectrochim. Acta Part B 64, 702 (2009)

    Article  ADS  Google Scholar 

  59. B. Praher, V. Palleschi, R. Viskup et al., Spectrochim. Acta Part B 65, 671 (2010)

    Article  ADS  Google Scholar 

  60. S. Shabanov, I. Gornushkin, J. Winefordner, Appl. Opt. 47, 1745 (2008)

    Article  ADS  Google Scholar 

  61. C. Ahamer, S. Eschlböck-Fuchs, P. Kolmhofer et al., Spectrochim. Acta Part B 122, 157 (2016)

    Article  ADS  Google Scholar 

  62. V. Lazic, R. Barbini, F. Colao et al., Spectrochim. Acta Part B 56, 807 (2001)

    Article  ADS  Google Scholar 

  63. NIST. Gov. (2020). https://www.nist.gov/pml/atomic-spectra-database. Accessed 18 Jan 2020

  64. Y. Wang, A. Chen, D. Zhang et al., Phys. Plasmas 27, 023507 (2020)

    Article  ADS  Google Scholar 

  65. D. Nishijima, R. Doerner, J. Phys. D Appl. Phys. 48, 325201 (2015)

    Article  Google Scholar 

  66. X. Li, Z. Yang, J. Wu et al., J. Appl. Phys. 119, 133301 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Foundation Research Project of Jiangsu Province (The Natural Science Fund NO. BK20190187) and the financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, Y., Xue, F., Liu, T. et al. The influence of target surface position on plasma characteristics in dual-pulse fiber-optic laser-induced breakdown spectroscopy. Appl. Phys. B 127, 48 (2021). https://doi.org/10.1007/s00340-020-07554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07554-w

Navigation