Skip to main content
Log in

Near-GHz scanned-wavelength-modulation spectroscopy for MHz thermometry and H\(_2\)O measurements in aluminized fireballs of energetic materials

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This manuscript presents the development of a two-color laser-absorption-spectroscopy (LAS) sensor capable of providing calibration-free measurements of temperature and H\(_2\)O at 1 MHz in particle-laden combustion environments. This sensor employs scanned-wavelength-modulation spectroscopy with first-harmonic-normalized second-harmonic detection (scanned-WMS-2f/1f) with two distributed-feedback (DFB) tunable diode lasers (TDLs) emitting near 1392 nm and 1469 nm. The wavelength of each laser was modulated at 35 or 45.5 MHz to frequency multiplex the lasers and, more importantly, enable simultaneous wavelength scanning across the peak of each H\(_2\)O absorption transition at 1 MHz. This method provides an absolute, in situ wavelength reference which improves measurement accuracy and robustness. Methods to characterize the lasers’ wavelength and intensity modulation at frequencies above 10 MHz are presented. Measurements of temperature and H\(_2\)O mole fraction within 0.3–2.5% and 2–10%, respectively, of known values were acquired in a static-gas cell at temperatures of 700–1200 K. The sensor was applied to measure the path-integrated temperature and H\(_2\)O column density in fireballs produced by igniting 0.75 g of grade 3, class B HMX with and without H-5 micro-aluminum powder (20% by mass). Temperature measurements were acquired in the fireballs with a 1–\(\sigma\) precision of 50 K, 30 K, and 15 K for measurement rates of 1 MHz, 250 kHz, and 25 kHz, respectively. The results are the first to demonstrate that calibration-free measurements of gas properties can be acquired at 1 MHz using WMS-2f/1f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.M. Peuker, P. Lynch, H. Krier, N. Glumac, Optical depth measurements of fireballs from aluminized high explosives. Opt. Lasers Eng. 47(9), 1009–1015 (2009)

    Google Scholar 

  2. R. Lodes, H. Krier, N. Glumac, Spectrally-and-temporally-resolved optical depth measurements in high explosive post-detonation fireballs. Propellants Explos. Pyrotech. 45, 406–415 (2020)

    Google Scholar 

  3. K.P. Brooks, M.W. Beckstead, Dynamics of aluminum combustion. J. Propul. Power 11(4), 769–780 (1995)

    Google Scholar 

  4. S. Goroshin, D.L. Frost, J. Levine, A. Yoshinaka, F. Zhang, Optical pyrometry of fireballs of metalized explosives. Propellants Explos. Pyrotech. 31(3), 169–181 (2006)

    Google Scholar 

  5. T. Bazyn, H. Krier, N. Glumac, Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves. Combust. Flame 145, 703–713 (2006)

    Google Scholar 

  6. T. Bazyn, H. Krier, N. Glumac, Evidence for the transition from the diffusion-limit in aluminum particle combustion. Proc. Combust. Inst. 31, 2021–2028 (2007)

    Google Scholar 

  7. J.D. Koch, S. Piecuch, J.M. Lightstone, J.R. Carney, J. Hooper, Time-resolved measurements of near infrared emission spectra from explosions: Pure pentaerythritol tetranitrate and its mixtures containing silver and aluminum particles. J. Appl. Phys. 108(3), 1–4 (2010)

    Google Scholar 

  8. J.M. Peuker, P. Lynch, H. Krier, N. Glumac, On AlO emission spectroscopy as a diagnostic in energetic materials testing. Propellants Explos. Pyrotech. 38(4), 577–585 (2013)

    Google Scholar 

  9. N. Glumac, Absorption spectroscopy measurements in optically dense explosive fireballs using a modeless broadband dye laser. Appl. Spectrosc. 63(9), 1075–1080 (2009)

    ADS  Google Scholar 

  10. M. Soo, N. Glumac, Ultraviolet absorption spectroscopy in optically dense fireballs using broadband second-harmonic generation of a pulsed modeless dye laser. Appl. Spectrosc. 68(5), 517–524 (2014)

    ADS  Google Scholar 

  11. J.R. Carney, J.M. Lightstone, S. Piecuch, J.D. Koch, Water temperature and concentration measurements within the expanding blast wave of a high explosive. Meas. Sci. Technol. 22, 045601 (2011)

    ADS  Google Scholar 

  12. C. Murzyn, A. Sims, H. Krier, N. Glumac, High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy. Opt. Lasers Eng. 110, 186–192 (2018)

    Google Scholar 

  13. M.C. Phillips, B.E. Bernacki, S.S. Harilal, B.E. Brumfield, J.M. Schwallier, N.G. Glumac, Characterization of high-explosive detonations using broadband infrared external cavity quantum cascade laser absorption spectroscopy. J. Appl. Phys. 126(9), 093102 (2019)

    ADS  Google Scholar 

  14. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 60, 132–176 (2017)

    Google Scholar 

  15. K.D. Rein, S. Roy, S.T. Sanders, A.W. Caswell, F.R. Schauer, J.R. Gord, Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine. Appl. Phys. B 123(3), 88 (2017)

    ADS  Google Scholar 

  16. K.D. Rein, S. Roy, S.T. Sanders, A.W. Caswell, F.R. Schauer, J.R. Gord, Multispecies absorption spectroscopy of detonation events at 100 kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system. Appl. Opt. 55(23), 6256–6262 (2016)

    ADS  Google Scholar 

  17. E.F. Nasir, A. Farooq, Intra-pulse H\(_{2}\)O absorption diagnostic for temperature sensing in a rapid compression machine. Appl. Phys. B 125(11), 210 (2019)

    ADS  Google Scholar 

  18. D.I. Pineda, F.A. Bendana, K.K. Schwarm, R.M. Spearrin, Multi-isotopologue laser absorption spectroscopy of carbon monoxide for high-temperature chemical kinetic studies of fuel mixtures. Combust. Flame 207, 379–390 (2019)

    Google Scholar 

  19. R.S. Chrystie, E.F. Nasir, A. Farooq, Towards simultaneous calibration-free and ultra-fast sensing of temperature and species in the intrapulse mode. Proc. Combust. Inst. 35(3), 3757–3764 (2015)

    Google Scholar 

  20. A.P. Nair, D.D. Lee, D.I. Pineda, J. Kriesel, W.A. Hargus, J.W. Bennewitz, S.A. Danczyk, R.M. Spearrin, Mhz laser absorption spectroscopy via diplexed rf modulation for pressure, temperature, and species in rotating detonation rocket flows. Appl. Phys. B 126(8), 1–20 (2020)

    Google Scholar 

  21. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48(29), 5546–5560 (2009)

    ADS  Google Scholar 

  22. C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53(3), 356–367 (2014)

    ADS  Google Scholar 

  23. C.S. Goldenstein, R.M. Spearrin, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Wavelength-modulation spectroscopy near 1.4 \(\upmu\)m for measurements of H\(_{2}\)O and temperature in high-pressure and-temperature gases. Meas. Sci. Technol. 25(5), 055101 (2014)

    ADS  Google Scholar 

  24. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. Appl. Opt. 53(9), 1938–1946 (2014)

    ADS  Google Scholar 

  25. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser absorption sensors for multiple performance parameters in a detonation combustor. Proc. Combust. Inst. 35(3), 3739–3747 (2015)

    Google Scholar 

  26. C.L. Strand, R.K. Hanson, Quantification of supersonic impulse flow conditions via high-bandwidth wavelength modulation absorption spectroscopy. AIAA J. 53(10), 2978–2987 (2015)

    ADS  Google Scholar 

  27. C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H\(_{2}\)O in a rotating detonation engine. Meas. Sci. Technol. 25(10), 105104 (2014)

    ADS  Google Scholar 

  28. W.Y. Peng, S.J. Cassady, C.L. Strand, C.S. Goldenstein, R.M. Spearrin, C.M. Brophy, J.B. Jeffries, R.K. Hanson, Single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water concentration and temperature within the annulus of a rotating detonation engine. Proc. Combust. Inst. 37(2), 1435–1443 (2019)

    Google Scholar 

  29. A. McLean, C. Mitchell, D. Swanston, Implementation of an efficient analytical approximation to the Voigt function for photoemission lineshape analysis. J. Electron Spectrosc. Relat. Phenom. 69(2), 125–132 (1994)

    Google Scholar 

  30. C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52(33), 7950–7962 (2013)

    ADS  Google Scholar 

  31. J. Reid, J. Shewchun, B. Garside, E. Ballik, High sensitivity pollution detection employing tunable diode lasers. Appl. Opt. 17(2), 300–307 (1978)

    ADS  Google Scholar 

  32. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24(12), 125203 (2013)

    ADS  Google Scholar 

  33. D.T. Cassidy, J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 21(7), 1185–1190 (1982)

    ADS  Google Scholar 

  34. C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Scanned-wavelength-modulation spectroscopy near 2.5 um for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B 116, 717–727 (2014)

    ADS  Google Scholar 

  35. J.A. Silver, Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. Appl. Opt. 31(6), 707–717 (1992)

    ADS  Google Scholar 

  36. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, Direct frequency modulation in AlGaAs semiconductor lasers. IEEE Trans. Microw. Theory Tech. 30(4), 428–441 (1982)

    ADS  Google Scholar 

  37. D. Welford, S. Alexander, Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers. J. Lightwave Technol. 3(5), 1092–1099 (1985)

    ADS  Google Scholar 

  38. R.S. Tucker, High-speed modulation of semiconductor lasers. IEEE Trans. Electron. Devices 32(12), 2572–2584 (1985)

    ADS  Google Scholar 

  39. R. Olshansky, P. Hill, V. Lanzisera, W. Powazinik, Frequency response of 1.3 \(\upmu\)m ingaasp high speed semiconductor lasers. IEEE J. Quantum Electron. 23(9), 1410–1418 (1987)

    ADS  Google Scholar 

  40. C.S. Goldenstein, G.C. Mathews, Simulation technique enabling calibration-free frequency-modulation spectroscopy measurements of gas conditions and lineshapes with modulation frequencies spanning kHz to GHz. Appl. Opt. 59(5), 1491–1500 (2020)

    ADS  Google Scholar 

  41. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown et al., The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

    ADS  Google Scholar 

  42. C.S. Goldenstein, V.A. Miller, R.M. Spearrin, C.L. Strand, SpectraPlot.com: Integrated Spectroscopic Modeling of Atomic and Molecular Gases. J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017)

    ADS  Google Scholar 

  43. K.K. Schwarm, H.Q. Dinh, C.S. Goldenstein, D.I. Pineda, R.M. Spearrin, High-pressure and high-temperature gas cell for absorption spectroscopy studies at wavelengths up to 8 \(\upmu\)m. J. Quant. Spectrosc. Radiat. Transfer 227, 145–151 (2019)

    ADS  Google Scholar 

  44. R.J. Tancin, G.C. Mathews, C.S. Goldenstein, Design and application of a high-pressure combustion chamber for studying propellant flames with laser diagnostics. Rev. Sci. Instrum. 90(4), 045111 (2019)

    ADS  Google Scholar 

  45. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45(5), 1052–1061 (2006)

    ADS  Google Scholar 

  46. G.C. Bjorklund, Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 5(1), 15–17 (1980)

    ADS  Google Scholar 

  47. M. Hercher, The spherical mirror fabry-perot interferometer. Appl. Opt. 7(5), 951–966 (1968)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Defense Threat Reduction Agency (DTRA) Young Investigator Award (Grant: HDTRA1–17-1-0023) with Dr. Jeff Davis as program monitor. Garrett Mathews was supported by the National Science Foundation Graduate Research Fellowship Program (NSF GRFP, Grant: 1842166-DGE). The authors also thank Amanda Braun, Alex Brown, Mateo Gomez, Josh Ludwigsen, Prof. Steven Son, and Prof. Terrence Meyer at Purdue University for their assistance in preparing and handling test samples of HMX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Mathews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathews, G., Goldenstein, C. Near-GHz scanned-wavelength-modulation spectroscopy for MHz thermometry and H\(_2\)O measurements in aluminized fireballs of energetic materials. Appl. Phys. B 126, 189 (2020). https://doi.org/10.1007/s00340-020-07527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07527-z

Navigation